一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

面向圖像識(shí)別的測地局部典型相關(guān)分析方法

許歡 蘇樹智 顏文婧 鄧瀛灝 謝軍

許歡, 蘇樹智, 顏文婧, 鄧瀛灝, 謝軍. 面向圖像識(shí)別的測地局部典型相關(guān)分析方法[J]. 電子與信息學(xué)報(bào), 2020, 42(11): 2813-2818. doi: 10.11999/JEIT200123
引用本文: 許歡, 蘇樹智, 顏文婧, 鄧瀛灝, 謝軍. 面向圖像識(shí)別的測地局部典型相關(guān)分析方法[J]. 電子與信息學(xué)報(bào), 2020, 42(11): 2813-2818. doi: 10.11999/JEIT200123
Huan XU, Shuzhi SU, Wenjing YAN, Yinghao DENG, Jun XIE. A Geodesic Locality Canonical Correlation Analysis Method for Image Recognition[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2813-2818. doi: 10.11999/JEIT200123
Citation: Huan XU, Shuzhi SU, Wenjing YAN, Yinghao DENG, Jun XIE. A Geodesic Locality Canonical Correlation Analysis Method for Image Recognition[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2813-2818. doi: 10.11999/JEIT200123

面向圖像識(shí)別的測地局部典型相關(guān)分析方法

doi: 10.11999/JEIT200123 cstr: 32379.14.JEIT200123
基金項(xiàng)目: 國家自然科學(xué)基金(61806006),安徽省高等學(xué)校自然科學(xué)研究基金(KJ2018A0083),中國博士后科學(xué)基金(2019M660149)
詳細(xì)信息
    作者簡介:

    許歡:女,1982年生,助教,研究方向?yàn)闄C(jī)器學(xué)習(xí)、圖像處理、模式識(shí)別

    蘇樹智:男,1987年生,副教授,研究方向?yàn)槎嗄B(tài)模式識(shí)別、特征學(xué)習(xí)、子空間融合、圖像處理

    顏文婧:女,1984年生,講師,研究方向?yàn)闄C(jī)器學(xué)習(xí)、模式識(shí)別、信號(hào)處理

    通訊作者:

    蘇樹智 sushuzhi@foxmail.com

  • 中圖分類號(hào): TN911.73; TP391.4

A Geodesic Locality Canonical Correlation Analysis Method for Image Recognition

Funds: The National Natural Science Foundation of China (61806006), The Anhui Province Natural Science Research Foundation of Institutions of Higher Learning (KJ2018A0083), The China Postdoctoral Science Foundation (2019M660149)
  • 摘要: 典型相關(guān)分析(CCA)是一種經(jīng)典的多模態(tài)特征學(xué)習(xí)方法,能夠從不同模態(tài)同時(shí)學(xué)習(xí)相關(guān)性最大的低維特征,然而難以發(fā)現(xiàn)隱藏在樣本空間中的非線性流形結(jié)構(gòu)。該文提出一種基于測地流形的多模態(tài)特征學(xué)習(xí)方法,即測地局部典型相關(guān)分析(GeoLCCA)。該方法利用測地距離構(gòu)建了低維相關(guān)特征的測地散布,并進(jìn)一步通過最大化模態(tài)間的相關(guān)性和最小化模態(tài)內(nèi)的測地散布學(xué)習(xí)更具鑒別力的非線性相關(guān)特征。該文不僅在理論上對提出的方法進(jìn)行了分析,而且在真實(shí)的圖像數(shù)據(jù)集上驗(yàn)證了方法的有效性。
  • 表  1  在GT圖像數(shù)據(jù)集上的識(shí)別率(%)及標(biāo)準(zhǔn)差

    訓(xùn)練樣本數(shù)5訓(xùn)練樣本數(shù)6訓(xùn)練樣本數(shù)7訓(xùn)練樣本數(shù)8
    GeoLCCA67.26±2.0171.36±1.8376.10±1.2878.20±1.31
    GMCCA65.22±1.6466.64±1.5669.70±1.7572.06±1.66
    LPCCA44.84±1.7350.09±3.7954.15±1.7457.46±2.56
    DMCCA63.56±2.7767.80±1.2973.67±1.7175.80±1.99
    CCA59.08±1.8161.78±1.3566.22±1.6668.14±2.01
    A±B: A表示平均識(shí)別率(%),B表示對應(yīng)的識(shí)別率標(biāo)準(zhǔn)差
    下載: 導(dǎo)出CSV

    表  2  在ORL圖像數(shù)據(jù)集上的識(shí)別率(%)及標(biāo)準(zhǔn)差

    訓(xùn)練樣本數(shù)5訓(xùn)練樣本數(shù)6訓(xùn)練樣本數(shù)7訓(xùn)練樣本數(shù)8
    GeoLCCA95.15±1.5897.19±1.3398.25±0.8399.50±0.65
    GMCCA93.90±2.0495.19±0.8997.00±1.5398.50±1.42
    LPCCA84.70±3.0087.81±2.4089.17±2.0094.25±2.58
    DMCCA93.80±1.5395.50±1.7496.75±1.4999.38±0.66
    CCA90.35±1.9493.19±1.9493.83±1.6897.25±1.15
    A±B: A表示平均識(shí)別率(%),B表示對應(yīng)的識(shí)別率標(biāo)準(zhǔn)差
    下載: 導(dǎo)出CSV
  • 劉政怡, 段群濤, 石松, 等. 基于多模態(tài)特征融合監(jiān)督的RGB-D圖像顯著性檢測[J]. 電子與信息學(xué)報(bào), 2020, 42(4): 997–1004. doi: 10.11999/JEIT190297

    LIU Zhengyi, DUAN Quntao, SHI Song, et al. RGB-D image saliency detection based on multi-modal feature-fused supervision[J]. Journal of Electronics &Information Technology, 2020, 42(4): 997–1004. doi: 10.11999/JEIT190297
    YE Qiaolin, FU Liyong, ZHANG Zhao, et al. Lp- and Ls-norm distance based robust linear discriminant analysis[J]. Neural Networks, 2018, 105: 393–404. doi: 10.1016/j.neunet.2018.05.020
    王肖鋒, 孫明月, 葛為民. 基于圖像協(xié)方差無關(guān)的增量特征提取方法研究[J]. 電子與信息學(xué)報(bào), 2019, 41(11): 2768–2776. doi: 10.11999/JEIT181138

    WANG Xiaofeng, SUN Mingyue, and GE Weimin. An incremental feature extraction method without estimating image covariance matrix[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2768–2776. doi: 10.11999/JEIT181138
    YUAN Sen and MAO Xia. Exponential elastic preserving projections for facial expression recognition[J]. Neurocomputing, 2018, 275: 711–724. doi: 10.1016/j.neucom.2017.08.067
    WANG Rong, NIE Feiping, HONG Richang, et al. Fast and orthogonal locality preserving projections for dimensionality reduction[J]. IEEE Transactions on Image Processing, 2017, 26(10): 5019–5030. doi: 10.1109/TIP.2017.2726188
    ZHU Yani, ZHU Chaoyang, and LI Xiaoxin. Improved principal component analysis and linear regression classification for face recognition[J]. Signal Processing, 2018, 145: 175–182. doi: 10.1016/j.sigpro.2017.11.018
    KUMAR S, BHUYAN M K, LOVELL B C, et al. Hierarchical uncorrelated multiview discriminant locality preserving projection for multiview facial expression recognition[J]. Journal of Visual Communication and Image Representation, 2018, 54: 171–181. doi: 10.1016/j.jvcir.2018.04.013
    GAJJAR S, KULAHCI M, and PALAZOGLU A. Real-time fault detection and diagnosis using sparse principal component analysis[J]. Journal of Process Control, 2018, 67: 112–128. doi: 10.1016/j.jprocont.2017.03.005
    WANG Hao, FAN Yuanyuan, FANG Baofu, et al. Generalized linear discriminant analysis based on Euclidean norm for gait recognition[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(4): 569–576. doi: 10.1007/s13042-016-0540-0
    董書琴, 張斌. 基于深度特征學(xué)習(xí)的網(wǎng)絡(luò)流量異常檢測方法[J]. 電子與信息學(xué)報(bào), 2020, 42(3): 695–703. doi: 10.11999/JEIT190266

    DONG Shuqin and ZHANG Bin. Network traffic anomaly detection method based on deep features learning[J]. Journal of Electronics &Information Technology, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266
    SUN Quansen, ZENG Shenggen, LIU Yan, et al. A new method of feature fusion and its application in image recognition[J]. Pattern Recognition, 2005, 38(12): 2437–2448. doi: 10.1016/j.patcog.2004.12.013
    CHEN Jia, WANG Gang, and GIANNAKIS G B. Graph multiview canonical correlation analysis[J]. IEEE Transactions on Signal Processing, 2019, 67(11): 2826–2838. doi: 10.1109/TSP.2019.2910475
    LIU Yiqi, LIU Bin, ZHAO Xiujie, et al. A mixture of variational canonical correlation analysis for nonlinear and quality-relevant process monitoring[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6478–6486. doi: 10.1109/TIE.2017.2786253
    HONG Kan, LIU Guodong, CHEN Wentao, et al. Classification of the emotional stress and physical stress using signal magnification and canonical correlation analysis[J]. Pattern Recognition, 2018, 77: 140–149. doi: 10.1016/j.patcog.2017.12.013
    SAFO S E, AHN J, JEON Y, et al. Sparse generalized eigenvalue problem with application to canonical correlation analysis for integrative analysis of methylation and gene expression data[J]. Biometrics, 2018, 74(4): 1362–1371. doi: 10.1111/biom.12886
    GAO Lei, QI Lin, CHEN Enqing, et al. Discriminative multiple canonical correlation analysis for information fusion[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1951–1965. doi: 10.1109/TIP.2017.2765820
    GENG Fazhan and QIAN Suping. An optimal reproducing kernel method for linear nonlocal boundary value problems[J]. Applied Mathematics Letters, 2018, 77: 49–56. doi: 10.1016/j.aml.2017.10.002
    MELZER T, REITER M, and BISCHOF H. Appearance models based on kernel canonical correlation analysis[J]. Pattern Recognition, 2003, 36(9): 1961–1971. doi: 10.1016/s0031-3203(03)00058-x
    ALAM M A, FUKUMIZU K, and WANG Yuping. Influence function and robust variant of kernel canonical correlation analysis[J]. Neurocomputing, 2018, 304: 12–29. doi: 10.1016/j.neucom.2018.04.008
    SUN Tingkai and CHEN Songcan. Locality preserving CCA with applications to data visualization and pose estimation[J]. Image and Vision Computing, 2007, 25(5): 531–543. doi: 10.1016/j.imavis.2006.04.014
    CHEN Jia, WANG Gang, SHEN Yanning, et al. Canonical correlation analysis of datasets with a common source graph[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4398–4408. doi: 10.1109/TSP.2018.2853130
    BALASUBRAMANIAN M, SCHWARTZ E L, TENENBAUM J B, et al. The Isomap algorithm and topological stability[J]. Science, 2002, 295(5552): 7. doi: 10.1126/science.295.5552.7a
    ZHANG Guiying, ZOU Wenbin, ZHANG Xianjie, et al. Singular value decomposition based virtual representation for face recognition[J]. Multimedia Tools and Applications, 2018, 77(6): 7171–7186. doi: 10.1007/s11042-017-4627-8
    SU Shuzhi, GE Hongwei, YUAN Yunhao, et al. A label embedding kernel method for multi-view canonical correlation analysis[J]. Multimedia Tools and Applications, 2017, 76(12): 13785–13803. doi: 10.1007/s11042-016-3786-3
    SU Shuzhi, FANG Xianjin, YANG Gaoming, et al. Self-balanced multi-view orthogonality correlation analysis for image feature learning[J]. Infrared Physics & Technology, 2019, 100: 44–51. doi: 10.1016/j.infrared.2019.05.008
  • 加載中
表(2)
計(jì)量
  • 文章訪問數(shù):  1533
  • HTML全文瀏覽量:  499
  • PDF下載量:  63
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2020-02-21
  • 修回日期:  2020-07-23
  • 網(wǎng)絡(luò)出版日期:  2020-07-23
  • 刊出日期:  2020-11-16

目錄

    /

    返回文章
    返回