基于自適應(yīng)權(quán)值裁剪的Adaboost快速訓(xùn)練算法
doi: 10.11999/JEIT190473 cstr: 32379.14.JEIT190473
-
華南理工大學(xué)自動化科學(xué)與工程學(xué)院 廣州 510640
基金項目: 海防公益類項目(201505002),廣東省重點研發(fā)計劃-新一代人工智能(20180109),廣州市產(chǎn)業(yè)技術(shù)重大攻關(guān)計劃(2019-01-01-12-1006-0001),廣東省科學(xué)技術(shù)廳重大科技計劃項目(2016B090912001),中央高校基本科研業(yè)務(wù)費專項資金(2018KZ05)
Fast Training Adaboost Algorithm Based on Adaptive Weight Trimming
-
College of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China
Funds: The Coast defence Public Welfare Project (201505002), Guangdong Province Key R&D Program-A New Generation of Artificial Intelligence (20180109), Guangzhou City Industrial Technology Major Research Project (2019-01-01-12-1006-0001), The Major Science and Technology Plan Project of Guangdong Science and Technology Department (2016B090912001), The Special Fund for Basic Scientific Research in Central Colleges and Universities (2018KZ05)
-
摘要: Adaboost是一種廣泛使用的機器學(xué)習(xí)算法,然而Adaboost算法在訓(xùn)練時耗時十分嚴(yán)重。針對該問題,該文提出一種基于自適應(yīng)權(quán)值的Adaboost快速訓(xùn)練算法AWTAdaboost。該算法首先統(tǒng)計每一輪迭代的樣本權(quán)值分布,再結(jié)合當(dāng)前樣本權(quán)值的最大值和樣本集規(guī)模計算出裁剪系數(shù),權(quán)值小于裁剪系數(shù)的樣本將不參與訓(xùn)練,進(jìn)而加快了訓(xùn)練速度。在INRIA數(shù)據(jù)集和自定義數(shù)據(jù)集上的實驗表明,該文算法能在保證檢測效果的情況下大幅加快訓(xùn)練速度,相比于其他快速訓(xùn)練算法,在訓(xùn)練時間接近的情況下有更好的檢測效果。
-
關(guān)鍵詞:
- 目標(biāo)檢測 /
- Adaboost算法 /
- 快速訓(xùn)練 /
- 自適應(yīng) /
- 權(quán)值分布
Abstract: The Adaboost algorithm provides noteworthy benefits over the traditional machine algorithms for numerous applications, including face recognition, text recognition, and pedestrian detection. However, it takes a lot of time during the training process that affects the overall performance. Adaboost fast training algorithm based on adaptive weight (Adaptable Weight Trimming Adaboost, AWTAdaboost) is proposed in this work to address the aforementioned issue. First, the algorithm counts the current sample weight distribution of each iteration. Then, it combines the maximum value of current sample weights with data size to calculate the adaptable coefficients. The sample whose weight is less than the adaptable coefficients is discarded, that speeds up the training. The experimental results validate that it can significantly speed up the training speed while ensuring the detection effect. Compared with other fast training algorithms, the detection effect is better when the training time is close to each other.-
Key words:
- Object detection /
- Adaboost algorithm /
- Fast traing /
- Adaptive /
- Weight distribution
-
表 1 各算法在兩個數(shù)據(jù)集上的錯誤率
INRIA數(shù)據(jù)集 自定義數(shù)據(jù)集 訓(xùn)練集錯誤率 測試集錯誤率 訓(xùn)練集錯誤率 測試集錯誤率 Adaboost 0.0000 0.0285 0.0000 0.0296 SWTAdaboost 0.0395 0.0768 0.0538 0.1089 DWTAdaboost 0.0000 0.0466 0.0194 0.0735 WNS-Adaboost 0.0000 0.0356 0.0006 0.0439 GAdaboost 0.0563 0.1108 0.0724 0.1345 PCA+DRAdaboost 0.0000 0.0413 0.0000 0.0539 AWTAdaboost 0.0000 0.0302 0.0000 0.0324 下載: 導(dǎo)出CSV
表 2 各算法訓(xùn)練時間對比
算法 INRIA數(shù)據(jù)集相對
訓(xùn)練時間自定義數(shù)據(jù)集相對
訓(xùn)練時間Adaboost 1.0000 1.0000 SWTAdaboost 0.6237 0.6547 DWTAdaboost 0.6347 0.6551 WNS-Adaboost 0.5814 0.5919 GAdaboost 0.4482 0.4636 PCA+DRAdaboost 0.5124 0.5324 AWTAdaboost 0.5570 0.5732 注:表中只記錄了SWTAdaboost提前停止迭代前的訓(xùn)練時間和相同$\beta $下DWTAdaboost的訓(xùn)練時間。 下載: 導(dǎo)出CSV
-
VALIANT L G. A theory of the learnable[C]. The 16th Annual ACM Symposium on Theory of Computing, New York, USA, 1984: 436–445. KEARNS M and VALIANT L. Cryptographic limitations on learning Boolean formulae and finite automata[J]. Journal of the ACM, 1994, 41(1): 67–95. doi: 10.1145/174644.174647 SCHAPIRE R E. The strength of weak learnability[J]. Machine Learning, 1990, 5(2): 197–227. FREUND Y and SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119–139. doi: 10.1006/jcss.1997.1504 FREUND Y and SCHAPIRE R E. Experiments with a new boosting algorithm[C]. International Conference on Machine Learning, Bari, Italy, 1996: 148–156. ZHANG Xingqiang and DING Jiajun. An improved Adaboost face detection algorithm based on the different sample weights[C]. The 20th IEEE International Conference on Computer Supported Cooperative Work in Design, Nanchang, China, 2016: 436–439. CHO H, SUNG M, and JUN B. Canny text detector: Fast and robust scene text localization algorithm[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 3566–3573. GAO Chenqiang, LI Pei, ZHANG Yajun, et al. People counting based on head detection combining Adaboost and CNN in crowded surveillance environment[J]. Neurocomputing, 2016, 208: 108–116. doi: 10.1016/j.neucom.2016.01.097 FRIEDMAN J, HASTIE T, and TIBSHIRANI R. Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors)[J]. Annals of Statistics, 2000, 28(2): 337–407. 賈慧星, 章毓晉. 基于動態(tài)權(quán)重裁剪的快速Adaboost訓(xùn)練算法[J]. 計算機學(xué)報, 2009, 32(2): 336–341. doi: 10.3724/SP.J.1016.2009.00336JIA Huixing and ZHANG Yujin. Fast Adaboost training algorithm by dynamic weight trimming[J]. Chinese Journal of Computers, 2009, 32(2): 336–341. doi: 10.3724/SP.J.1016.2009.00336 SEYEDHOSSEINI M, PAIVA A R C, and TASDIZEN T. Fast AdaBoost training using weighted novelty selection[C]. 2011 International Joint Conference on Neural Networks, San Jose, USA, 2011: 1245–1250. TOLBA M F and MOUSTAFA M. GAdaBoost: Accelerating adaboost feature selection with genetic algorithms[C]. The 8th International Joint Conference on Computational Intelligence, Porto, Portugal, 2016: 156-163. YUAN Shuang and Lü Cixing. Fast adaboost algorithm based on weight constraints[C]. 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, Shenyang, China, 2015: 825–828. 袁雙, 呂賜興. 基于PCA改進(jìn)的快速Adaboost算法研究[J]. 科學(xué)技術(shù)與工程, 2015, 15(29): 62–66. doi: 10.3969/j.issn.1671-1815.2015.29.011YUAN Shuang and Lü Cixing. Fast adaboost algorithm based on improved PCA[J]. Science Technology and Engineering, 2015, 15(29): 62–66. doi: 10.3969/j.issn.1671-1815.2015.29.011 DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886–893. -