一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于自適應(yīng)權(quán)值裁剪的Adaboost快速訓(xùn)練算法

余陸斌 杜啟亮 田聯(lián)房

余陸斌, 杜啟亮, 田聯(lián)房. 基于自適應(yīng)權(quán)值裁剪的Adaboost快速訓(xùn)練算法[J]. 電子與信息學(xué)報, 2020, 42(11): 2742-2748. doi: 10.11999/JEIT190473
引用本文: 余陸斌, 杜啟亮, 田聯(lián)房. 基于自適應(yīng)權(quán)值裁剪的Adaboost快速訓(xùn)練算法[J]. 電子與信息學(xué)報, 2020, 42(11): 2742-2748. doi: 10.11999/JEIT190473
Lubin YU, Qiliang DU, Lianfang TIAN. Fast Training Adaboost Algorithm Based on Adaptive Weight Trimming[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2742-2748. doi: 10.11999/JEIT190473
Citation: Lubin YU, Qiliang DU, Lianfang TIAN. Fast Training Adaboost Algorithm Based on Adaptive Weight Trimming[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2742-2748. doi: 10.11999/JEIT190473

基于自適應(yīng)權(quán)值裁剪的Adaboost快速訓(xùn)練算法

doi: 10.11999/JEIT190473 cstr: 32379.14.JEIT190473
基金項目: 海防公益類項目(201505002),廣東省重點研發(fā)計劃-新一代人工智能(20180109),廣州市產(chǎn)業(yè)技術(shù)重大攻關(guān)計劃(2019-01-01-12-1006-0001),廣東省科學(xué)技術(shù)廳重大科技計劃項目(2016B090912001),中央高校基本科研業(yè)務(wù)費專項資金(2018KZ05)
詳細(xì)信息
    作者簡介:

    余陸斌:男,1994年生,博士生,主要研究方向為機器學(xué)習(xí)、機器視覺

    杜啟亮:男,1980年生,副研究員,博士,主要研究方向為機器人、機器視覺

    田聯(lián)房:男,1968年生,教授,博士,主要研究方向為模式識別、人工智能

    通訊作者:

    杜啟亮 qldu@scut.edu.cn

  • 中圖分類號: TP391

Fast Training Adaboost Algorithm Based on Adaptive Weight Trimming

Funds: The Coast defence Public Welfare Project (201505002), Guangdong Province Key R&D Program-A New Generation of Artificial Intelligence (20180109), Guangzhou City Industrial Technology Major Research Project (2019-01-01-12-1006-0001), The Major Science and Technology Plan Project of Guangdong Science and Technology Department (2016B090912001), The Special Fund for Basic Scientific Research in Central Colleges and Universities (2018KZ05)
  • 摘要: Adaboost是一種廣泛使用的機器學(xué)習(xí)算法,然而Adaboost算法在訓(xùn)練時耗時十分嚴(yán)重。針對該問題,該文提出一種基于自適應(yīng)權(quán)值的Adaboost快速訓(xùn)練算法AWTAdaboost。該算法首先統(tǒng)計每一輪迭代的樣本權(quán)值分布,再結(jié)合當(dāng)前樣本權(quán)值的最大值和樣本集規(guī)模計算出裁剪系數(shù),權(quán)值小于裁剪系數(shù)的樣本將不參與訓(xùn)練,進(jìn)而加快了訓(xùn)練速度。在INRIA數(shù)據(jù)集和自定義數(shù)據(jù)集上的實驗表明,該文算法能在保證檢測效果的情況下大幅加快訓(xùn)練速度,相比于其他快速訓(xùn)練算法,在訓(xùn)練時間接近的情況下有更好的檢測效果。
  • 圖  1  自定義數(shù)據(jù)集樣本示例

    圖  2  各算法在INRIA數(shù)據(jù)集上的錯誤率

    圖  3  各算法在自定義數(shù)據(jù)集上的錯誤率

    圖  4  各算法的訓(xùn)練時間

    圖  5  AWTAdaboost算法在訓(xùn)練時保留樣本比例

    表  1  各算法在兩個數(shù)據(jù)集上的錯誤率

    INRIA數(shù)據(jù)集自定義數(shù)據(jù)集
    訓(xùn)練集錯誤率測試集錯誤率訓(xùn)練集錯誤率測試集錯誤率
    Adaboost0.00000.02850.00000.0296
    SWTAdaboost0.03950.07680.05380.1089
    DWTAdaboost0.00000.04660.01940.0735
    WNS-Adaboost0.00000.03560.00060.0439
    GAdaboost0.05630.11080.07240.1345
    PCA+DRAdaboost0.00000.04130.00000.0539
    AWTAdaboost0.00000.03020.00000.0324
    下載: 導(dǎo)出CSV

    表  2  各算法訓(xùn)練時間對比

    算法INRIA數(shù)據(jù)集相對
    訓(xùn)練時間
    自定義數(shù)據(jù)集相對
    訓(xùn)練時間
    Adaboost1.00001.0000
    SWTAdaboost0.62370.6547
    DWTAdaboost0.63470.6551
    WNS-Adaboost0.58140.5919
    GAdaboost0.44820.4636
    PCA+DRAdaboost0.51240.5324
    AWTAdaboost0.55700.5732
    注:表中只記錄了SWTAdaboost提前停止迭代前的訓(xùn)練時間和相同$\beta $下DWTAdaboost的訓(xùn)練時間。
    下載: 導(dǎo)出CSV
  • VALIANT L G. A theory of the learnable[C]. The 16th Annual ACM Symposium on Theory of Computing, New York, USA, 1984: 436–445.
    KEARNS M and VALIANT L. Cryptographic limitations on learning Boolean formulae and finite automata[J]. Journal of the ACM, 1994, 41(1): 67–95. doi: 10.1145/174644.174647
    SCHAPIRE R E. The strength of weak learnability[J]. Machine Learning, 1990, 5(2): 197–227.
    FREUND Y and SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119–139. doi: 10.1006/jcss.1997.1504
    FREUND Y and SCHAPIRE R E. Experiments with a new boosting algorithm[C]. International Conference on Machine Learning, Bari, Italy, 1996: 148–156.
    ZHANG Xingqiang and DING Jiajun. An improved Adaboost face detection algorithm based on the different sample weights[C]. The 20th IEEE International Conference on Computer Supported Cooperative Work in Design, Nanchang, China, 2016: 436–439.
    CHO H, SUNG M, and JUN B. Canny text detector: Fast and robust scene text localization algorithm[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 3566–3573.
    GAO Chenqiang, LI Pei, ZHANG Yajun, et al. People counting based on head detection combining Adaboost and CNN in crowded surveillance environment[J]. Neurocomputing, 2016, 208: 108–116. doi: 10.1016/j.neucom.2016.01.097
    FRIEDMAN J, HASTIE T, and TIBSHIRANI R. Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors)[J]. Annals of Statistics, 2000, 28(2): 337–407.
    賈慧星, 章毓晉. 基于動態(tài)權(quán)重裁剪的快速Adaboost訓(xùn)練算法[J]. 計算機學(xué)報, 2009, 32(2): 336–341. doi: 10.3724/SP.J.1016.2009.00336

    JIA Huixing and ZHANG Yujin. Fast Adaboost training algorithm by dynamic weight trimming[J]. Chinese Journal of Computers, 2009, 32(2): 336–341. doi: 10.3724/SP.J.1016.2009.00336
    SEYEDHOSSEINI M, PAIVA A R C, and TASDIZEN T. Fast AdaBoost training using weighted novelty selection[C]. 2011 International Joint Conference on Neural Networks, San Jose, USA, 2011: 1245–1250.
    TOLBA M F and MOUSTAFA M. GAdaBoost: Accelerating adaboost feature selection with genetic algorithms[C]. The 8th International Joint Conference on Computational Intelligence, Porto, Portugal, 2016: 156-163.
    YUAN Shuang and Lü Cixing. Fast adaboost algorithm based on weight constraints[C]. 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, Shenyang, China, 2015: 825–828.
    袁雙, 呂賜興. 基于PCA改進(jìn)的快速Adaboost算法研究[J]. 科學(xué)技術(shù)與工程, 2015, 15(29): 62–66. doi: 10.3969/j.issn.1671-1815.2015.29.011

    YUAN Shuang and Lü Cixing. Fast adaboost algorithm based on improved PCA[J]. Science Technology and Engineering, 2015, 15(29): 62–66. doi: 10.3969/j.issn.1671-1815.2015.29.011
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886–893.
  • 加載中
圖(5) / 表(2)
計量
  • 文章訪問數(shù):  1183
  • HTML全文瀏覽量:  428
  • PDF下載量:  62
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-06-27
  • 修回日期:  2020-04-19
  • 網(wǎng)絡(luò)出版日期:  2020-08-31
  • 刊出日期:  2020-11-16

目錄

    /

    返回文章
    返回