一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于多特征圖金字塔融合深度網(wǎng)絡(luò)的遙感圖像語(yǔ)義分割

趙斐 張文凱 閆志遠(yuǎn) 于泓峰 刁文輝

趙斐, 張文凱, 閆志遠(yuǎn), 于泓峰, 刁文輝. 基于多特征圖金字塔融合深度網(wǎng)絡(luò)的遙感圖像語(yǔ)義分割[J]. 電子與信息學(xué)報(bào), 2019, 41(10): 2525-2531. doi: 10.11999/JEIT190047
引用本文: 趙斐, 張文凱, 閆志遠(yuǎn), 于泓峰, 刁文輝. 基于多特征圖金字塔融合深度網(wǎng)絡(luò)的遙感圖像語(yǔ)義分割[J]. 電子與信息學(xué)報(bào), 2019, 41(10): 2525-2531. doi: 10.11999/JEIT190047
Fei ZHAO, Wenkai ZHANG, Zhiyuan YAN, Hongfeng YU, Wenhui DIAO. Multi-feature Map Pyramid Fusion Deep Network for Semantic Segmentation on Remote Sensing Data[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2525-2531. doi: 10.11999/JEIT190047
Citation: Fei ZHAO, Wenkai ZHANG, Zhiyuan YAN, Hongfeng YU, Wenhui DIAO. Multi-feature Map Pyramid Fusion Deep Network for Semantic Segmentation on Remote Sensing Data[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2525-2531. doi: 10.11999/JEIT190047

基于多特征圖金字塔融合深度網(wǎng)絡(luò)的遙感圖像語(yǔ)義分割

doi: 10.11999/JEIT190047 cstr: 32379.14.JEIT190047
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(41701508)
詳細(xì)信息
    作者簡(jiǎn)介:

    趙斐:男,1974年生,高級(jí)工程師,研究方向?yàn)檫b感圖像目標(biāo)檢測(cè)

    張文凱:男,1990年生,助理研究員,研究方向?yàn)閳D像集視覺(jué)總結(jié),遙感圖像分類

    閆志遠(yuǎn):女,1994年生,碩士,研究方向?yàn)檫b感圖像語(yǔ)義分割

    于泓峰:男,1991年生,助理研究員,研究方向?yàn)檫b感圖像智能解譯

    刁文輝:男,1988年生,助理研究員,研究方向?yàn)檫b感圖像目標(biāo)檢測(cè)

    通訊作者:

    張文凱 iecas_wenkai@yahoo.com

  • 中圖分類號(hào): TP391.41

Multi-feature Map Pyramid Fusion Deep Network for Semantic Segmentation on Remote Sensing Data

Funds: The National Natural Science Foundation of China (41701508)
  • 摘要: 在遙感圖像語(yǔ)義分割中,利用多元數(shù)據(jù)(如高程信息)進(jìn)行輔助是一個(gè)研究重點(diǎn)。現(xiàn)有的基于多元數(shù)據(jù)的分割方法通常直接將多元數(shù)據(jù)作為模型的多特征輸入,未能充分利用多元數(shù)據(jù)的多層次特征,此外,遙感圖像中目標(biāo)尺寸大小不一,對(duì)于一些中小型目標(biāo),如車輛、房屋等,難以做到精細(xì)化分割。針對(duì)以上問(wèn)題,提出一種多特征圖金字塔融合深度網(wǎng)絡(luò)(MFPNet),該模型利用光學(xué)遙感圖像和高程數(shù)據(jù)作為輸入,提取圖像的多層次特征,然后針對(duì)不同層次的特征,分別引入金字塔池化結(jié)構(gòu),提取圖像的多尺度特征,最后,設(shè)計(jì)了一種多層次、多尺度特征融合策略,綜合利用多元數(shù)據(jù)的特征信息,實(shí)現(xiàn)遙感圖像的精細(xì)化分割?;赩aihingen數(shù)據(jù)集設(shè)計(jì)了相應(yīng)的對(duì)比實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果證明了所提方法的有效性。
  • 圖  1  多元特征圖融合網(wǎng)絡(luò)模型框架圖

    圖  2  金字塔池化結(jié)構(gòu)

    圖  3  不同方法分割結(jié)果對(duì)比圖

    表  1  特征編碼網(wǎng)絡(luò)結(jié)構(gòu)

    ResNet卷積層光學(xué)遙感圖像分支輸出高程數(shù)據(jù)分支輸出多元特征融合融合輸出輸出尺寸
    7×7,64,步幅2L1-imgL1-ele1/2
    3×3,最大值池化,步幅2
    $\left. \begin{aligned}& \ \, 1 \times 1,\;64\\ & \ \, 3 \times 3,\;64\;\;\;\; \times 3\\ & \ \, 1 \times 1,\;256 \end{aligned} \right\}$
    L2-imgL2-eleC21/4
    $\left. \begin{aligned} & 1 \times 1,\;128\\ & 3 \times 3,\;128\;\;\;\; \times 4\\ & 1 \times 1,\;512 \end{aligned} \right\}$L3-imgL3-eleC31/8
    $\left. \begin{aligned} & 1 \times 1,\;128\\ & 3 \times 3,\;128\;\; \times 23\\ & 1 \times 1,\;512 \end{aligned} \right\}\left( {{\text{帶孔卷積}} } \right)$L4-imgL4-eleC41/8
    $\left. \begin{aligned}& \ \, 1 \times 1,\;512\\ & \ \, 3 \times 3,\;512\;\; \times 3\\ & \ \, 1 \times 1,\;2048 \end{aligned} \right\}\left( {{\text{帶孔卷積}} } \right)$L5-imgL5-eleC51/8
    下載: 導(dǎo)出CSV

    表  2  MFPNet模型消融實(shí)驗(yàn)結(jié)果

    模型mIOUOAF1
    道路建筑物草地樹(shù)木車輛其它
    Color-E68.9681.770.850.880.720.830.500.59
    MFFNet75.8184.750.890.910.790.870.620.68
    MFPNet77.1085.950.910.960.820.880.760.75
    下載: 導(dǎo)出CSV

    表  3  MFPNet與其他方法的對(duì)比結(jié)果

    方法mIoUOAF1
    道路建筑物草地樹(shù)木車輛其它
    FCN59.6579.670.820.860.690.810.560.59
    Deeplab70.8582.750.860.890.720.820.600.61
    PSPNet74.9683.920.900.930.740.810.650.63
    MFPNet77.1085.950.910.960.820.880.760.75
    下載: 導(dǎo)出CSV
  • DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886–893.
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91–110. doi: 10.1023/B:VISI.0000029664.99615.94
    SHOTTON J, JOHNSON M, and CIPOLLA R. Semantic texton forests for image categorization and segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, 2012: 1097–1105.
    LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3431–3440.
    KAMPFFMEYER M, SALBERG A B, and JENSSEN R. Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks[C]. The IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, USA, 2016: 1–9.
    MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Convolutional neural networks for large-scale remote-sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 645–657. doi: 10.1109/TGRS.2016.2612821
    SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
    MARMANIS D, WEGNER J D, GALLIANI S, et al. Semantic Segmentation of Aerial Images with an Ensemble of CNNS[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, III-3: 473–480. doi: 10.5194/isprsannals-III-3-473-2016
    SHERRAH J. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery[J]. arXiv: 1606.02585, 2016.
    ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2016: 6230–6239.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    HAZIRBAS C, MA L N, DOMOKOS C, et al. FuseNet: Incorporating depth into semantic segmentation via fusion-based CNN architecture[C]. The 13th Asian Conference on Computer Vision, Taipei, China, 2016.
    ISPRS 2D semantic labeling contest[EB/OL]. http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html, 2019.
    ABADI M, BARHAM P, CHEN Jianmin, et al. TensorFlow: A system for large-scale machine learning[C]. The 12th USENIX Conference on Operating Systems Design and Implementation, Savannah, USA, 2016.
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184
  • 加載中
圖(3) / 表(3)
計(jì)量
  • 文章訪問(wèn)數(shù):  8397
  • HTML全文瀏覽量:  3094
  • PDF下載量:  295
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-01-17
  • 修回日期:  2019-04-08
  • 網(wǎng)絡(luò)出版日期:  2019-04-20
  • 刊出日期:  2019-10-01

目錄

    /

    返回文章
    返回