L波段雷達(dá)電離層高速運(yùn)動(dòng)目標(biāo)ISAR成像補(bǔ)償方法
doi: 10.11999/JEIT150646 cstr: 32379.14.JEIT150646
基金項(xiàng)目:
國家自然科學(xué)基金(61002025)
Compensating Method of L-band Radar ISAR Imaging for Ionosphereic Target with High-velocity
Funds:
The National Natural Science Foundation of China (61002025)
-
摘要: 目標(biāo)高速運(yùn)動(dòng)和電離層效應(yīng)都會(huì)對低頻段寬帶線性調(diào)頻雷達(dá)信號(hào)的相位產(chǎn)生調(diào)制現(xiàn)象,進(jìn)而降低逆合成孔徑雷達(dá)(ISAR)成像分辨率。為得到清晰的目標(biāo)ISAR圖像,需有效消除這兩者對目標(biāo)回波的影響。該文首先建立電離層高速運(yùn)動(dòng)目標(biāo)回波的信號(hào)模型,再根據(jù)目標(biāo)回波為高階多項(xiàng)式相位信號(hào)的特點(diǎn),提出基于離散多項(xiàng)式變換的高階相位估計(jì)算法,利用高階相位估計(jì)值進(jìn)行回波信號(hào)相位調(diào)制分量補(bǔ)償,實(shí)現(xiàn)ISAR成像的自聚焦。仿真實(shí)驗(yàn)表明,該算法可以準(zhǔn)確估計(jì)回波信號(hào)高階相位參數(shù),提高ISAR成像質(zhì)量。
-
關(guān)鍵詞:
- 逆合成孔徑雷達(dá) /
- 電離層 /
- 多項(xiàng)式相位信號(hào) /
- 運(yùn)動(dòng)補(bǔ)償
Abstract: High velocity and Ionosphereic both modulate the phase of low carrier frequency wide-band linearly frequency modulated radar signal , It make the resolution of Inverse SAR (ISAR) image lower. In order to get clean ISAR image, the effect of high velocity and ionosphereic are both must be removed. Firstly, signal model of ionosphereic target with high-velocity are deduced. The high order phase signal parameter estimation method is proposed, using discrete polynomial-phase transform. Motion compensation is done with the estimated values got by this method. Simulation experiments show that the parameters can be estimated right, it can improve the ISAR image deformed by hyper-velocity and ionosphereic.-
Key words:
- Inverse SAR (ISAR) /
- Ionosphereic /
- Polynomial Phase Signal (PPS) /
- Motion compensation
-
許志偉, 張磊, 邢孟道. 基于特征配準(zhǔn)的ISAR圖像方位定標(biāo)方法[J]. 電子與信息學(xué)報(bào), 2014, 36(9): 2173-2179. Xu Zhi-wei, Zhang Lei, and Xing Meng-dao. A novel cross-rang scaling algorithm for ISAR images based on feature registration[J]. Journal of Electronics Information Technology, 2014, 36(9): 2173-2179. 徐少坤, 劉記紅, 袁翔宇, 等. 基于ISAR圖像的中段目標(biāo)二維幾何特征反演方法[J]. 電子與信息學(xué)報(bào), 2015, 37(2): 339-345. Xu Shao-kun, Liu Ji-hong, Yuan Xiang-yu, et al.. Two dimensional geomtric feature inversion method for midcouse target based on ISAR image[J]. Journal of Electronics Information Technology, 2015, 37(2): 339-345. 俞翔, 朱岱寅, 張勁東, 等. 基于設(shè)計(jì)結(jié)構(gòu)化Gram矩陣的ISAR運(yùn)動(dòng)補(bǔ)償方法[J]. 電子學(xué)報(bào), 2014, 42(3): 452-461. Yu Xiang, Zhu Dai-yin, Zhang Jing-dong, et al.. A motion compensation algorithm based on the designing structured gram matric[J]. Acta Electronica Sinica, 2014, 42(3): 452-461. Wang Y and Jiang Y C. Inverse synthetic aperture radar imaging of three-dimensional rotation target based on two-order match fourier transform[J]. IET Signal Processing, 2012, 6(2): 159-169. Wang J F and Liu X Z. Improved global range alignment for ISAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1070-1075. 劉波, 李道京, 李烈辰. 基于壓縮感知的干涉逆合成孔徑雷達(dá)成像研究[J]. 電波科學(xué)學(xué)報(bào), 2014, 29(1): 19-25. Liu Bo, Li Dao-jing, and Li Lie-chen. Moving target InSAR imaging and location based on compressed sensing[J]. Chinese Journal of Radio Science, 2014, 29(1): 19-25. 黃小紅, 邱兆坤, 王偉. 目標(biāo)高速運(yùn)動(dòng)對寬帶一維距離像的影響及補(bǔ)償方法研究[J]. 信號(hào)處理, 2002, 18(6): 487-490. Huang Xiao-hong, Qiu Zhao-kun, and Wang Wei. Research on effect of wideband range profile imaging and compensating method for target moving with high velocity[J]. Signal Processing, 2002, 18(6): 487-490. Xing M D, Wu R B, and Bao Z. High resolution ISAR imaging of high speed moving targets[J]. IEE Proceedings- Radar, Sonar and Navigation, 2005, 152(2): 58-67. 劉紅超, 糾博, 劉宏偉, 等. 一種勻加速空間目標(biāo)高分辨距離像補(bǔ)償算法[J]. 西安電子科技大學(xué)學(xué)報(bào), 2012, 39(4): 81-86. Liu Hong-chao, Jiu Bo, Liu Hong-wei, et al.. High resolution range profile compensation algorithm for the space target with uniform acceleration algorithm[J]. Journal of Xidian University, 2012, 39(4): 81-86. 唐輝, 胡衛(wèi)東, 郁文賢. 電離層對L波段空間目標(biāo)ISAR成像影響的建模與仿真[J]. 電波科學(xué)學(xué)報(bào), 2007, 22(1): 143-147. Tang Hui, Hu Wei-dong, and Yu Wen-xian. Modeling and simulation of ionospheric effects on L-band ISAR imaging of space objects[J]. Chinese Journal of Radio Science, 2007, 22(1): 143-147. 李亮, 洪峻, 明峰, 等. 電離層時(shí)空變化對中高軌SAR成像質(zhì)量的影響分析[J]. 電子與信息學(xué)報(bào), 2014, 36(4): 915-922. Li Liang, Hong Jun, Ming Feng, et al.. Study on ionospheric effects induced by spatio-temporal variability on medium- earth-orbit SAR imaging quality[J]. Journal of Electronics Information Technology, 2014, 36(4): 915-922. Freeman A and Saatchi S S. On the detection of faraday rotation in linearly polarized L-band SAR backscatter signatures[J]. IEEE Transacions on Geoscience and Remote Sensing, 2004, 42(8): 1607-1616. Chen Jie, Li Zhou, Liu Wei, et al.. Image formation algorithm for topside ionosphere sounding with spaceborne HF-SAR system[C]. IEEE IGARSS Conference, Boston, Massachusetts, USA, 2008: II549-552. 邢孟道, 保錚. 電離層電波傳播相位污染校正[J]. 電波科學(xué)學(xué)報(bào), 2002, 17(2): 129-133. Xing Meng-dao and Bao Zheng. Phase perturbation correction in ionospheric electromagnetic wave propagation [J]. Chinese Journal of Radio Science, 2002, 17(2): 129-133. Nicoll J B and Meyer F J. Mapping the ionosphere using L-band SAR data[C]. IEEE IGARSS Conference, Boston, Massachusetts, USA, 2008: II537-540. 趙寧, 周芳, 王振, 等. P 波段雷達(dá)成像電離層效應(yīng)的地面觀測與校正[J]. 雷達(dá)學(xué)報(bào), 2014, 3(1): 45-51. Zhao Ning, Zhou Fang, Wang Zhen, et al.. Ground observation and correction of P-band radar imaging ionospheric effects[J]. Journal of Radars, 2014, 3(1): 45-51. Peleg S and Friedlander B. Multicomponent signal analysis using the poloynomial-phase transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 378-386. Barbarossa S, Scaglione A, and Georgios B G. Product high-order ambiguity function for multicomponent polynomial-phase signal modeling[J]. IEEE Transactions on Signal Processing, 1998, 46(3): 691-708. Peleg S and Friedlander Benjamin. The discrete polynomial- phase transform[J]. IEEE Transactions on Signal Processing, 1995, 43(8): 1901-1914. -
計(jì)量
- 文章訪問數(shù): 1351
- HTML全文瀏覽量: 182
- PDF下載量: 663
- 被引次數(shù): 0