一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于聚類分析的內(nèi)核惡意軟件特征選擇

陳志鋒 李清寶 張平 馮培鈞

陳志鋒, 李清寶, 張平, 馮培鈞. 基于聚類分析的內(nèi)核惡意軟件特征選擇[J]. 電子與信息學報, 2015, 37(12): 2821-2829. doi: 10.11999/JEIT150387
引用本文: 陳志鋒, 李清寶, 張平, 馮培鈞. 基于聚類分析的內(nèi)核惡意軟件特征選擇[J]. 電子與信息學報, 2015, 37(12): 2821-2829. doi: 10.11999/JEIT150387
Chen Zhi-feng, Li Qing-bao, Zhang Ping, Feng Pei-jun. Signature Selection for Kernel Malware Based on Cluster Analysis[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2821-2829. doi: 10.11999/JEIT150387
Citation: Chen Zhi-feng, Li Qing-bao, Zhang Ping, Feng Pei-jun. Signature Selection for Kernel Malware Based on Cluster Analysis[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2821-2829. doi: 10.11999/JEIT150387

基于聚類分析的內(nèi)核惡意軟件特征選擇

doi: 10.11999/JEIT150387 cstr: 32379.14.JEIT150387
基金項目: 

核高基國家科技重大專項(2013JH00103)和國家863計劃目標導向項目(2009AA01Z434)

Signature Selection for Kernel Malware Based on Cluster Analysis

Funds: 

The National Science and Technology Major Project of China (2013JH00103)

  • 摘要: 針對現(xiàn)有基于數(shù)據(jù)特征的內(nèi)核惡意軟件檢測方法存在隨特征的增多效率較低的問題,該文提出一種基于層次聚類的特征選擇方法。首先,分析相似度計算方法應用于數(shù)據(jù)特征相似度計算時存在的困難,提出最長公共子集并設計兩輪Hash求解法計算最長公共子集;其次,設計基于最長公共子集的層次聚類算法,有效地將相似特征聚類成簇;在此基礎上,設計基于不一致系數(shù)的內(nèi)核惡意軟件特征選擇算法,大大減少特征數(shù),提高檢測效率。實驗結(jié)果驗證了方法的有效性,且時間開銷在可接受的范圍內(nèi)。
  • Yin H, Song D, Egele M, et al.. Panorama: capturing system-wide information flow for malware detection and analysis[C]. Proceedings of the 14th ACM Conference on Computer and Communications Security, Alexandria, USA, 2007: 116-127.
    王蕊, 馮登國, 楊軼, 等. 基于語義的惡意代碼行為特征提取及檢測方法[J]. 軟件學報, 2012, 23(2): 378-393.
    Wang Rui, Feng Deng-guo, Yang Yi, et al.. Semantics-based malware behavior signature extraction and detection method[J]. Journal of Software, 2012, 23(2): 378-393.
    Nataraj L, Karthikeyan S, Jacob G, et al.. Malware images: visualization and automatic classification[C]. Proceedings of the 8th International Symposium on Visualization for Cyber Security, Pittsburg, PA, USA, 2011: 4-10.
    Nataraj L, Yegneswaran V, Porras P, et al.. A comparative assessment of malware classification using binary texture analysis and dynamic analysis[C]. Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence, Chicago, USA, 2011: 21-30.
    韓曉光, 曲武, 姚宣霞, 等. 基于紋理指紋的惡意代碼變種檢測方法研究[J]. 通信學報, 2014, 35(8): 125-136.
    Han Xiao-guang, Qu Wu, Yao Xuan-xia, et al.. Research on malicious code variants detection based on texture fingerprint [J]. Journal of Communications, 2014, 35(8): 125-136.
    Ding Yun-xin, Dai Wei, Yan Sheng-li, et al.. Control flow- based opcode behavior analysis for malware detection[J]. Computer Security, 2014, 44: 65-74.
    Wang X and Karri R. NumChecker: detecting kernel control- flow modifying rootkits by using hardware performance counters[C]. Proceedings of the 50th Annual Design Automation Conference, Austin, TX, USA, 2013: 79-86.
    Debbabi M, Desharnais J, et al.. Static detection of malicious code in executable programs[J]. Intermational Journal of Requirement Engineering, 2001(184-189): 79-86.
    Baliga A, Ganapathy V, and Iftode L. Detecting kernel-level rootkits using data structure invariants[J]. IEEE Transactions on Dependable and Secure Computing, 2011, 8(5): 670-684.
    Zhu F. Integrity-based kernel malware detection[D]. [Ph.D. dissertation], Florida International University, 2014.
    Rhee J, Riley R, Lin Z Q, et al.. Data-centric OS kernel malware characterization[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(1): 72-87.
    Tumer D, Entwisle S, Fossi M, et al.. Symantec Internet security thread report 2014[R]. Symantec Corporation, 2014.
    陳季夢, 陳佳俊, 劉杰, 等. 基于結(jié)構(gòu)相似度的大規(guī)模社交網(wǎng)絡聚類算法[J]. 電子與信息學報, 2015, 37(2): 449-454.
    Chen Ji-meng, Chen Jia-jun, Liu Jie, et al.. Clustering algorithms for large-scale social networks based on structural similarity[J]. Journal of Electronics Information Technology, 2015, 37(2): 449-454.
    Ciprian O, George C, and Gheorghe S. Malware clustering using suffix trees[J]. Journal of Computer Virology Hacking Techniques, 2014, DOI: 10.1007/s11416-014-0227-6.
    戚樹慧. 基于指令分析的惡意代碼分類與檢測研究[D]. [碩士論文], 杭州電子科技大學, 2012.
    Qi Shu-hui. Research into malware classification and detection based on instruction analysis[D]. [Master dissertation], Hangzhou Dianzi University, 2012.
    羅養(yǎng)霞, 房鼎益. 基于聚類分析的軟件胎記特征選擇[J]. 電子學報, 2013, 41(12): 2334-2338.
    Luo Yang-xia and Fang Ding-yi. Feature selection for software birthmark based on cluster analysis[J]. Acta Electronica Sinica, 2013, 41(12): 2334-2338.
    Bailey M, Oberheide J, Andersen J, et al.. Automated classification and analysis of internet malware[C]. Proceedings of the 10th Symposium on Recent Advances in Intrusion Detection, Gold Coast, Australia, 2007: 178-197.
  • 加載中
計量
  • 文章訪問數(shù):  1538
  • HTML全文瀏覽量:  134
  • PDF下載量:  815
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-04-02
  • 修回日期:  2015-07-30
  • 刊出日期:  2015-12-19

目錄

    /

    返回文章
    返回