基于稀疏表示的不相關(guān)分布式信源參數(shù)估計(jì)算法
doi: 10.11999/JEIT150340 cstr: 32379.14.JEIT150340
基金項(xiàng)目:
中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)基金(K5051202047)
Parameter Estimation Method of Incoherently Distributed Source via Sparse Representation
Funds:
The Fundamental Research Fund for the Central Universities of China (K5051202047)
-
摘要: 在分析不相關(guān)分布式信源(Incoherently Distributed Source, IDS)信號(hào)模型的基礎(chǔ)上,該文給出一種基于稀疏表示的IDS參數(shù)估計(jì)方法。該方法利用IDS協(xié)方差矩陣的Toeplitz性質(zhì),結(jié)合IDS協(xié)方差矩陣的兩點(diǎn)近似及Jacobi-Anger級(jí)數(shù)展開模型,分別采用兩個(gè)1維稀疏表示問題對(duì)IDS的角度擴(kuò)展及中心入射角度進(jìn)行估計(jì)。同現(xiàn)有算法相比,該文方法不需要進(jìn)行2維搜索,計(jì)算量較小。仿真結(jié)果表明,該文算法在低信噪比及小快拍情況下具有良好的參數(shù)估計(jì)性能。
-
關(guān)鍵詞:
- 信號(hào)處理 /
- 參數(shù)估計(jì) /
- 稀疏表示 /
- 不相關(guān)分布式信源
Abstract: By analyzing the signal model of the Incoherently Distribute Source (IDS), a sparse representation based parameter estimation method of IDS is presented. Through using the Toeplitz characteristic and the two point approximation model as well as the Jacobi-Anger expansion model of the covariance matrix of the IDS, the angle spread and the central direction angle of the IDS is estimated by adopting two sparse representation problems. Compared with the present method, the proposed method does not need two dimensional searches and has low computational burden. Simulation results show that the proposed method has good parameter estimation performance in the low signal-to-noise ratio and small snapshot number scenario. -
Jantti T P. The influence of extended sources on the theoretical performance of the MUSIC and ESPRIT methods: Narrow-band sources[C]. Proceedings of International Conference on Acoustics, Speech and Signal Processing 1992, San Francisco, 1992: 429-432. Trump T and Ottersten B. Estimation of nominal direction of arrival and angular spread using an array of sensors[J]. Signal Processing, 1996, 50(2): 57-69 Valaee S, Champagne B, and Kabal P. Parametric location of distribute source[J]. IEEE Transactions on Signal Processing, 1995, 43(9): 2144-2153. Meng Y, Stoica P, and Wong K M. Estimation of the direction of arrival of spatially dispersed signals in array processing[J]. IEE Proceedings-Radar, Sonar, and Navigation, 1996, 143(1): 1-9. Hassanien A, Shahbazpanshi S, and Gershman A B. A generalized Capon estimator for localization of multiple spread sources[J]. IEEE Transactions on Signal Processing, 2004, 52(1): 280-283. Besson O and Stoica P. Decoupled estimation of DOA and angular spread for a spatially distributed source[J]. IEEE Transactions on Signal Processing, 2000, 48(8): 2185-2194. Bengtsson M and Ottersten B. Low-complexity estimator for distributed sources[J]. IEEE Transactions on Signal Processing, 2000, 48(7): 1872-1882. 韓英華, 汪晉寬, 宋昕. 相干分布式信源二維波達(dá)方向估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2009, 31(2): 323-326. Han Ying-hua, Wang Jin-kuan, and Song Xin. 2D DOA estimation algorithm for coherently distributed source[J]. Journal of Electronics Information Technology, 2009, 31(2): 323-326. 楊學(xué)敏, 李廣軍, 鄭植. 基于稀疏表示的相干分布式非圓信號(hào)的參數(shù)估計(jì)[J]. 電子與信息學(xué)報(bào), 2014, 36(1): 164-168. Yang Xue-min, Li Guang-jun, and Zheng Zhi. Parameter estimation of coherently distributed non-circular signal based on sparse representation[J]. Journal of Electronics Information Technology, 2014, 36(1): 164-168. Han K Y and Nehorai A. Distributed source processing with nested linear array[C]. IEEE 8th Sensor Array and Multichannel Signal Processing Workshop, Coruna, 2014: 521-524. Yang X M, Li G J, Zhang Z, et al.. Low-complexity 2D central angle estimation of coherently distributed sources with cross-correlation matrix[J]. Electronics Letters, 2014, 50(16): 1118-1120. Candes E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Maganize, 2008, 25: 21-30. Zheng J and Kaveh M. Sparse spatial spectral estimation: a covariance fitting algorithm, performance and regulation[J]. IEEE Transactions on Signal Processing, 2013, 61(11): 2767-2777. Wang J, Sheng W X, Han Y B, et al.. Adaptive beamforming with compressed sensoring for sparse receiving array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 823-833. Zhao T, Eldar Y C, and Nehorai A. Direction of arrival estimation using co-prime arrays: a super resolution viewpoint[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5565-5576. Yang Z, Xie L H, and Zhang C S. A discretization-free sparse and parametric approach for linear array processing[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 4959-4973. David W and Srikantan N. Iterative reweighted and methods for finding sparse solutions[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 317-329. Ba D, Babadi B, Purdon P L, et al.. Convergence and stability of iteratively re-weighted least squares algorithm[J]. IEEE Transactions on Signal Processing, 2014, 62(1): 183-195. Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization[J]. IEEE Signal Processing Letters, 2007, 14(10): 707-710. -
計(jì)量
- 文章訪問數(shù): 1279
- HTML全文瀏覽量: 108
- PDF下載量: 494
- 被引次數(shù): 0