一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于高度冗余Gabor框架的欠Nyquist采樣系統(tǒng)子空間探測

陳鵬 孟晨 王成

陳鵬, 孟晨, 王成. 基于高度冗余Gabor框架的欠Nyquist采樣系統(tǒng)子空間探測[J]. 電子與信息學報, 2015, 37(12): 2877-2884. doi: 10.11999/JEIT150327
引用本文: 陳鵬, 孟晨, 王成. 基于高度冗余Gabor框架的欠Nyquist采樣系統(tǒng)子空間探測[J]. 電子與信息學報, 2015, 37(12): 2877-2884. doi: 10.11999/JEIT150327
Chen Peng, Meng Chen, Wang Cheng. Subspace Detection of Sub-Nyquist Sampling System Based on Highly Redundant Gabor Frames[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2877-2884. doi: 10.11999/JEIT150327
Citation: Chen Peng, Meng Chen, Wang Cheng. Subspace Detection of Sub-Nyquist Sampling System Based on Highly Redundant Gabor Frames[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2877-2884. doi: 10.11999/JEIT150327

基于高度冗余Gabor框架的欠Nyquist采樣系統(tǒng)子空間探測

doi: 10.11999/JEIT150327 cstr: 32379.14.JEIT150327
基金項目: 

國家自然科學基金(61372039)

Subspace Detection of Sub-Nyquist Sampling System Based on Highly Redundant Gabor Frames

Funds: 

The National Natural Science Foundation of China (61372039)

  • 摘要: 基于指數(shù)再生窗Gabor框架的欠Nyquist采樣系統(tǒng)對窄脈沖信號完成采樣與重構(gòu)一般情況下效果較好,但是當框架高度冗余時,使用傳統(tǒng)面向系數(shù)域的方法對信號進行子空間探測會面臨失敗或較大誤差。該文采用面向信號域的思想,構(gòu)建了分塊的對偶Gabor字典,并對信號分塊稀疏表示;根據(jù)信號的分塊表示推導了采樣系統(tǒng)的測量矩陣,提出了測量矩陣受字典相干性約束的分塊-相干性;將信號合成模型引入多觀測向量問題,提出基于分塊-閉包的同步正交匹配追蹤算法(SOMPB,F ),用于信號子空間探測。此外還證明了算法的收斂約束條件。仿真結(jié)果表明,所提子空間探測方法相比傳統(tǒng)方法提高了信號重構(gòu)成功率,降低了采樣通道數(shù),并增強了系統(tǒng)魯棒性。
  • Park S and Park J. Compressed sensing MRI exploiting complementary dual decomposition[J]. Medical Image Analysis, 2014, 18(3): 472-486.
    王忠良, 馮燕, 賈應彪. 基于線性混合模型的高光譜圖像譜間壓縮感知重構(gòu)[J]. 電子與信息學報, 2014, 36(11): 2737-2743.
    Wang Zhong-liang, Feng Yan, and Jia Ying-biao. Reconstruction of hyperspectral images with spectral compressive sensing based on linear mixing models[J]. Journal of Electronics Information Technology, 2014, 36(11): 2737-2743.
    張京超, 付寧, 喬立巖, 等. 一種面向信息帶寬的頻譜感知方法研究[J]. 物理學報, 2014, 63(3): 030701.
    Zhang Jing-chao, Fu Ning, Qiao Li-yan, et al.. Investigation of information bandwidth oriented spectrum sensing method[J]. Acta Physica Sinica, 2014, 63(3): 030701.
    Omer B and Eldar Y C. Sub-Nyquist radar via doppler focusing[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1796-1811.
    Herman M A and Strohmer T. High-resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
    Razzaque M A, Bleakley C, and Dobson S. Compression in wireless sensor networks: a survey and comparative evaluation[J]. ACM Transactions on Sensor Networks, 2013, 10(1): Article No. 5.
    Michaeli T and Eldar Y C. Xampling at the rate of innovation[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1121-1133.
    Urigiien J A, Eldar Y C, and Dragotti P L. Compressed Sensing: Theory and Applications[M]. Cambridge, U.K.: Cambridge University Press, 2012: 148-213.
    Matusiak E and Eldar Y C. Sub-Nyquist sampling of short pulses[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1134-1148.
    陳鵬, 孟晨, 孫連峰, 等. 基于指數(shù)再生窗 Gabor 框架的窄脈沖欠 Nyquist 采樣與重構(gòu)[J]. 物理學報, 2014, 67(7): 070701.
    Chen Peng, Meng Chen, Sun Lian-feng, et al.. Sub-Nyquist sampling and reconstruction of short pulses based on Gabor frames with exponential reproducing windows[J]. Acta Physica Sinica, 2015, 64(7): 070701.
    Mishali M, Eldar Y C, and Elron A J. Xampling: signal acquisition and processing in union of subspaces[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4719-4734.
    Candes E J, Eldar Y C, Needell D, et al.. Compressed sensing with coherent and redundant dictionaries[J]. Applied and Computational Harmonic Analysis, 2011, 31(1): 59-73.
    Giryes R and Elad M. Can we allow linear dependencies in the dictionary in the sparse synthesis framework?[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 5459-5463.
    Blanchard J D, Cermak M, Hanle D, et al.. Greedy algorithms for joint sparse recovery[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1694-1704.
    Kloos T and St?ckler J. Zak transforms and gabor frames of totally positive functions and exponential B-splines[J]. Journal of Approximation Theory, 2014, 184(5): 209-237.
    Qiu S and Feichtinger H G. Discrete Gabor structures and optimal representations[J]. IEEE Transactions on Signal Processing, 1995, 43(10): 2258-2268.
    Qiu S. Block-circulant Gabor-matrix structure and discrete Gabor transforms[J]. Optical Engineering, 1995, 34(10): 2872-2878.
    Janssen A. Representations of Gabor Frame Operators[M]. Netherlands, Springer, 2001: 73-101.
    Casazza P G, Christensen O, and Janssen A. WeylHeisenberg frames, translation invariant systems and the Walnut representation[J]. Journal of Functional Analysis, 2001, 180(1): 85-147.
    Eldar Y C, Kuppinger P, and Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042-3054.
    Donoho D L, Elad M, and Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
    Leviatan D and Temlyakov V N. Simultaneous greedy approximation in Banach spaces[J]. Journal of Complexity, 2005, 21(3): 275-293.
  • 加載中
計量
  • 文章訪問數(shù):  1120
  • HTML全文瀏覽量:  91
  • PDF下載量:  466
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-03-20
  • 修回日期:  2015-08-24
  • 刊出日期:  2015-12-19

目錄

    /

    返回文章
    返回