基于高度冗余Gabor框架的欠Nyquist采樣系統(tǒng)子空間探測
doi: 10.11999/JEIT150327 cstr: 32379.14.JEIT150327
基金項目:
國家自然科學基金(61372039)
Subspace Detection of Sub-Nyquist Sampling System Based on Highly Redundant Gabor Frames
Funds:
The National Natural Science Foundation of China (61372039)
-
摘要: 基于指數(shù)再生窗Gabor框架的欠Nyquist采樣系統(tǒng)對窄脈沖信號完成采樣與重構(gòu)一般情況下效果較好,但是當框架高度冗余時,使用傳統(tǒng)面向系數(shù)域的方法對信號進行子空間探測會面臨失敗或較大誤差。該文采用面向信號域的思想,構(gòu)建了分塊的對偶Gabor字典,并對信號分塊稀疏表示;根據(jù)信號的分塊表示推導了采樣系統(tǒng)的測量矩陣,提出了測量矩陣受字典相干性約束的分塊-相干性;將信號合成模型引入多觀測向量問題,提出基于分塊-閉包的同步正交匹配追蹤算法(SOMPB,F ),用于信號子空間探測。此外還證明了算法的收斂約束條件。仿真結(jié)果表明,所提子空間探測方法相比傳統(tǒng)方法提高了信號重構(gòu)成功率,降低了采樣通道數(shù),并增強了系統(tǒng)魯棒性。Abstract: The sampling system based on Gabor frames with exponential reproducing windows holds nice performance for short pulses in general cases, but when the frames are highly redundant, the traditional coefficient oriented methods for subspace detection may fail or have large error. Firstly, the signal oriented idea is introduced and the blocked dual Gabor dictionaries are constructed, finishing the block sparse representation. By introducing the blocked dictionaries, the measurement matrix is constructed and the block-coherence restricted by the coherence of the dictionaries is proposed. Consequently, the synthesis model for signal representation is introduced to subspace detection based on Multiple Measurement Vector problem and the Simultaneous Orthogonal Matching Pursuit is proposed based on blocked-closure(SOMPB,F), using for subspace detection. Additionally, the convergence of the algorithm is proved. At last, simulation experiments prove that the new method improves the recovery rate, decreases the channel numbers and enforces the robustness of the sampling system compared with the traditional methods.
-
Key words:
- Signal processing /
- Gabor dictionaries /
- Coherence /
- Sub-Nyquist sampling /
- Subspace
-
Park S and Park J. Compressed sensing MRI exploiting complementary dual decomposition[J]. Medical Image Analysis, 2014, 18(3): 472-486. 王忠良, 馮燕, 賈應彪. 基于線性混合模型的高光譜圖像譜間壓縮感知重構(gòu)[J]. 電子與信息學報, 2014, 36(11): 2737-2743. Wang Zhong-liang, Feng Yan, and Jia Ying-biao. Reconstruction of hyperspectral images with spectral compressive sensing based on linear mixing models[J]. Journal of Electronics Information Technology, 2014, 36(11): 2737-2743. 張京超, 付寧, 喬立巖, 等. 一種面向信息帶寬的頻譜感知方法研究[J]. 物理學報, 2014, 63(3): 030701. Zhang Jing-chao, Fu Ning, Qiao Li-yan, et al.. Investigation of information bandwidth oriented spectrum sensing method[J]. Acta Physica Sinica, 2014, 63(3): 030701. Omer B and Eldar Y C. Sub-Nyquist radar via doppler focusing[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1796-1811. Herman M A and Strohmer T. High-resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284. Razzaque M A, Bleakley C, and Dobson S. Compression in wireless sensor networks: a survey and comparative evaluation[J]. ACM Transactions on Sensor Networks, 2013, 10(1): Article No. 5. Michaeli T and Eldar Y C. Xampling at the rate of innovation[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1121-1133. Urigiien J A, Eldar Y C, and Dragotti P L. Compressed Sensing: Theory and Applications[M]. Cambridge, U.K.: Cambridge University Press, 2012: 148-213. Matusiak E and Eldar Y C. Sub-Nyquist sampling of short pulses[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1134-1148. 陳鵬, 孟晨, 孫連峰, 等. 基于指數(shù)再生窗 Gabor 框架的窄脈沖欠 Nyquist 采樣與重構(gòu)[J]. 物理學報, 2014, 67(7): 070701. Chen Peng, Meng Chen, Sun Lian-feng, et al.. Sub-Nyquist sampling and reconstruction of short pulses based on Gabor frames with exponential reproducing windows[J]. Acta Physica Sinica, 2015, 64(7): 070701. Mishali M, Eldar Y C, and Elron A J. Xampling: signal acquisition and processing in union of subspaces[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4719-4734. Candes E J, Eldar Y C, Needell D, et al.. Compressed sensing with coherent and redundant dictionaries[J]. Applied and Computational Harmonic Analysis, 2011, 31(1): 59-73. Giryes R and Elad M. Can we allow linear dependencies in the dictionary in the sparse synthesis framework?[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 5459-5463. Blanchard J D, Cermak M, Hanle D, et al.. Greedy algorithms for joint sparse recovery[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1694-1704. Kloos T and St?ckler J. Zak transforms and gabor frames of totally positive functions and exponential B-splines[J]. Journal of Approximation Theory, 2014, 184(5): 209-237. Qiu S and Feichtinger H G. Discrete Gabor structures and optimal representations[J]. IEEE Transactions on Signal Processing, 1995, 43(10): 2258-2268. Qiu S. Block-circulant Gabor-matrix structure and discrete Gabor transforms[J]. Optical Engineering, 1995, 34(10): 2872-2878. Janssen A. Representations of Gabor Frame Operators[M]. Netherlands, Springer, 2001: 73-101. Casazza P G, Christensen O, and Janssen A. WeylHeisenberg frames, translation invariant systems and the Walnut representation[J]. Journal of Functional Analysis, 2001, 180(1): 85-147. Eldar Y C, Kuppinger P, and Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042-3054. Donoho D L, Elad M, and Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18. Leviatan D and Temlyakov V N. Simultaneous greedy approximation in Banach spaces[J]. Journal of Complexity, 2005, 21(3): 275-293. -
計量
- 文章訪問數(shù): 1120
- HTML全文瀏覽量: 91
- PDF下載量: 466
- 被引次數(shù): 0