非均勻陣列上相干信號(hào)的空間譜估計(jì)
SPATIAL SPECTRUM ESTIMATION OF COHERENT SOURCES IMP_1NGING ON NONUNIFORM ARRAYS
-
摘要: 本文提出了兩種處理非均勻或任意形狀陣列上相干信號(hào)空間譜估計(jì)的方法陣列數(shù)據(jù)變換法和不變子空間旋轉(zhuǎn)法。前一種方法對(duì)陣列數(shù)據(jù)進(jìn)行預(yù)處理使之可用已有的降維技術(shù)處理。后一種方法采取不變子空間旋轉(zhuǎn)運(yùn)算的途徑獲得多個(gè)線性獨(dú)立矢量以構(gòu)建信號(hào)子空間。不同于傳統(tǒng)的降維方法,不變子空間旋轉(zhuǎn)法不受陣列形狀的限制,也不會(huì)損失陣列的有效孔徑。計(jì)算機(jī)仿真的結(jié)果證實(shí)了本文方法的有效性。
-
關(guān)鍵詞:
- 陣列信號(hào)處理; 空間譜估計(jì); 測(cè)向; 相干信號(hào)
Abstract: The problem of bearing estimation of coherent signals impinging on an array of arbitrary geometry is studied. Two methods are developed. The first one synthesizes the observed array data imo the outputs of a linear uniform array and then processes them via cnnventional techniques such as spatial smoothing etc.; the second method is based on the invariant subspace rotation operation which is equivalent to the translational displacement of the array, linearly independent signal vectors are obtained thereby to span completely the signal subspace. As compared with the conventional processing techniques, the method based on invariant subspace rotation does not lead to an effective decrease in aperture size and therefore a decrease in resolution capability. The computer simulations are conducted to demonstrate the effectiveness of the presented methods. -
R. O. Schmidt, IEEE Trans. on ASSP, ASSP-33(1985)4, 387-392.[2]T. J. Shan, et al., IEEE Trans. on ASSP, ASSP -33(1985)8, 806-811.[3]H. Wang and M. Kaveh, IEEE Trans. on ASSP, ASSP-33(1985)8, 823-831.[4]F. Haber, M. Zoltowski, IEEE Trans. on AP, AP-34(1986)9, 1069-1079.[5]R. Kumaresan, A. K. Shaw, IEEE Trans. on AP, AP-36(1988)1, 34-44.[6]R. T. Williams, et al., IEEE Trans. on ASSP, ASSP-36(1988)4, 425-432.[7]高世偉, 相干信號(hào)源的高分辨陣列處理方法研究, 西安電子科技大學(xué)博士論文,1988年5月.[8]I. Ziskind, M. Wax, IEEE Trans. on ASSP, ASSP-36(1988)10, 1553-1560.[9]A. J. Weiss, et al.,IEEE Trans, on AES, AES-25(1989)1, 48-55.[10]T. B. Bronez, Sector Interpolation of Non-uniform Arrays for Efficient High Resolution Bearing Estimation, IEEE Proc. of ICASSP (1988), pp. 2885-2888.[11]M. J. Rendas, J. M. F. Moura, Resolving Narrowband Coherent Paths with Non-Uniform Arrays, IEEE Proc. of ICASSP (1989), 2625-2628.[12]H. Hung, M. Kaveh, IEEE Trans. on ASSP, ASSP-36(1988)8, 1272-1281.[13]路鳴,高分辨陣列信號(hào)處理方法研究,西安電子科技大學(xué)博士論文, 1990年,4月.[14]G. H. 格羅布, C. F. 萬(wàn)羅安薯, 廉慶榮譯,矩陣計(jì)算,大連理工大學(xué)出版社,1988年,498-994頁(yè).[15]R. Roy, T. Kailath, IEEE Trans. on ASSP, ASSP-37(1989)7, 984-995.[16]A. V.奧本海姆、R. W.謝弗著, 董士嘉等譯,數(shù)字信號(hào)處理,科學(xué)出版社,1982年,176-180頁(yè). -
計(jì)量
- 文章訪問(wèn)數(shù): 2144
- HTML全文瀏覽量: 149
- PDF下載量: 537
- 被引次數(shù): 0