基于模代數(shù)的真值向量計(jì)算及其在多值邏輯綜合中的應(yīng)用
CALCULATION OF TRUTH VECTOR BASED ON MODULAR ALGEBRA AND ITS APPLICATIONS IN SYNTHESIS OF MULTIPLE-VALUED LOGIC
-
摘要: 本文提出了由函數(shù)的真值向量計(jì)算Reed-Muller展式的簡捷方法,由此可判定函數(shù)能否線性分解或部分線性分解。用典型例子演示了其在多值邏輯綜合中的應(yīng)用,結(jié)果表明該方法行之有效。Abstract: In this paper,a simple and fast method for calculating Reed-Muller expression is presented by using truth vector of multiple-valued function,and whether a function can be linearly or partially linearly decomposed can be determined.By using typical examples,syntheses of multiple-valued logic functions are shown.The method turns out to be effective.
-
Green D H.Ternary Reed-Muller switching functions with fixed and mixed polarities[J].Int.J.Electronics.1989,67(5):761-765[2]吳訓(xùn)威.多值邏輯電路設(shè)計(jì)原理,杭州:杭州大學(xué)出版社,1994.10,33-45.[3]Benchu Fei,Qinghua Hong,Identification of linear ternary logic functions and its algorithms.IEEE Proceedings of the 24th International Symposium on Multiple-valued Logic;Boston:1994.5,324-327.[4]費(fèi)本初,洪晴華.GF(3)上多元多項(xiàng)式的化簡.應(yīng)用數(shù)學(xué),1996,9(2):193-198. -
計(jì)量
- 文章訪問數(shù): 2357
- HTML全文瀏覽量: 115
- PDF下載量: 465
- 被引次數(shù): 0