一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

一種基于無(wú)人機(jī)與智能反射面的隱蔽通信系統(tǒng)研究

劉學(xué)敏 錢玉文 宋耀良 束鋒 陳魁宇 朱捷偉

劉學(xué)敏, 錢玉文, 宋耀良, 束鋒, 陳魁宇, 朱捷偉. 一種基于無(wú)人機(jī)與智能反射面的隱蔽通信系統(tǒng)研究[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 386-396. doi: 10.11999/JEIT240663
引用本文: 劉學(xué)敏, 錢玉文, 宋耀良, 束鋒, 陳魁宇, 朱捷偉. 一種基于無(wú)人機(jī)與智能反射面的隱蔽通信系統(tǒng)研究[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 386-396. doi: 10.11999/JEIT240663
LIU Xuemin, QIAN Yuwen, SONG Yaoliang, SHU Feng, CHEN Kuiyu, ZHU Jiewei. An Intelligent Reflecting Surface Assisted Covert Communication System with a Cooperative Unmanned Aerial Vehicle[J]. Journal of Electronics & Information Technology, 2025, 47(2): 386-396. doi: 10.11999/JEIT240663
Citation: LIU Xuemin, QIAN Yuwen, SONG Yaoliang, SHU Feng, CHEN Kuiyu, ZHU Jiewei. An Intelligent Reflecting Surface Assisted Covert Communication System with a Cooperative Unmanned Aerial Vehicle[J]. Journal of Electronics & Information Technology, 2025, 47(2): 386-396. doi: 10.11999/JEIT240663

一種基于無(wú)人機(jī)與智能反射面的隱蔽通信系統(tǒng)研究

doi: 10.11999/JEIT240663 cstr: 32379.14.JEIT240663
基金項(xiàng)目: 國(guó)家重點(diǎn)研發(fā)計(jì)劃“政府間國(guó)際科技創(chuàng)新合作”重點(diǎn)專項(xiàng)(2022YFE0122300)
詳細(xì)信息
    作者簡(jiǎn)介:

    劉學(xué)敏:男,實(shí)驗(yàn)師,研究方向?yàn)殡娐放c系統(tǒng),通信信號(hào)處理等

    錢玉文:男,副教授,研究方向?yàn)闊o(wú)線、量子隱蔽通信,智能通信等

    宋耀良:男,教授,研究方向?yàn)槿斯る姶懦牧?,現(xiàn)代信號(hào)處理技術(shù)等

    束鋒:男,教授,研究方向?yàn)橹悄軣o(wú)線通信,智能無(wú)線信息安全傳輸?shù)?/p>

    陳魁宇:男,講師,研究方向?yàn)殡娮訉?duì)抗,智能無(wú)線通信等

    朱捷偉:男,工程師,研究方向?yàn)橹悄軣o(wú)線通信,5G等

    通訊作者:

    錢玉文 admon@njust.edu.cn

  • 中圖分類號(hào): TN918.82

An Intelligent Reflecting Surface Assisted Covert Communication System with a Cooperative Unmanned Aerial Vehicle

Funds: The Key Special Project of “Intergovernmental International Scientific and Technological Innovation Cooperation” in the National Key Research and Development Program (2022YFE0122300)
  • 摘要: 隱蔽通信可以在被監(jiān)控的情況下安全傳輸數(shù)據(jù),是網(wǎng)絡(luò)安全領(lǐng)域重要分支。然而,實(shí)際通信系統(tǒng)具有通信環(huán)境復(fù)雜、覆蓋范圍廣等特點(diǎn),這使得隱蔽通信很難部署。為此,該文提出一種基于智能反射面(IRS)與無(wú)人機(jī)(UAV)輔助的無(wú)線隱蔽通信系統(tǒng)。引入智能反射面作為中繼節(jié)點(diǎn)轉(zhuǎn)發(fā)發(fā)送者的信號(hào),使用無(wú)人機(jī)作為發(fā)送者的友元節(jié)點(diǎn),該友元節(jié)點(diǎn)通過(guò)發(fā)送人工噪聲來(lái)干擾惡意用戶對(duì)隱蔽通信的檢測(cè)。在監(jiān)聽(tīng)者接收噪聲不確定的情況下,推導(dǎo)了最小錯(cuò)誤檢測(cè)概率,并與中斷概率作為約束,以最大化隱蔽通信速率為目標(biāo) ,建立了系統(tǒng)的優(yōu)化問(wèn)題,采用Dinkelbach算法求解。仿真結(jié)果表明,當(dāng)智能反射陣元的相位、干擾無(wú)人機(jī)的發(fā)射能量取得最優(yōu)時(shí),所提系統(tǒng)的隱蔽通信速率比單獨(dú)配置智能反射面的無(wú)線通信系統(tǒng)平均提高了37.9%,比單獨(dú)配置無(wú)人機(jī)的系統(tǒng)評(píng)價(jià)速率提高了1.17倍。
  • 圖  1  無(wú)人機(jī)輔助IRS隱蔽通信系統(tǒng)

    圖  2  無(wú)人機(jī)軌跡優(yōu)化圖

    圖  3  平均傳輸速率隨各參數(shù)變化仿真圖

    圖  4  UAV不同飛行時(shí)間仿真圖

    1  基于SCA和Dinkelbach技術(shù)的交替優(yōu)化算法

     (1) 初始化,RB,0, $ \eta $和迭代索引參數(shù)k=1;
     (2) 利用式(26)得到最優(yōu)$ {\boldsymbol{\varTheta}} $。
     (3) 重復(fù)
     (4) 通過(guò)得到$ \left( {{{\boldsymbol{Q}}_{k - 1}},{\boldsymbol{\varTheta}} } \right) $,解決式(33)更新$ \left( {{P_k},{{\hat P}_{{\text{U}},k}}} \right) $;
     (5) 根據(jù)求出的$ \left( {{P_k},{{\hat P}_{{\text{U}},k}}} \right) $,利用式(31)更新因子$ \eta $;
     (6) 通過(guò)得到的$ \left( {{\boldsymbol{\varTheta}} ,{P_k},{{\hat P}_{{\text{U}},k}}} \right) $,利用式(24a)更新RB,k;
     (7) 設(shè)置k$ \leftarrow $k+1;
     (8) 直到$ \left| {{R_{{\mathrm{B}},k}} - {R_{{\mathrm{B}},k - 1}}} \right| \le \kappa $。
    下載: 導(dǎo)出CSV

    表  1  仿真的具體參數(shù)設(shè)置

    參數(shù) 參數(shù)描述 取值
    N 無(wú)人機(jī)飛行時(shí)間 30 s
    T 無(wú)人機(jī)飛行時(shí)隙個(gè)數(shù) 30
    L 每個(gè)時(shí)隙持續(xù)時(shí)間 1 s
    H 無(wú)人機(jī)的固定飛行高度 50 m
    M 智能反射面反射單元個(gè)數(shù) 30
    Vmax 無(wú)人機(jī)的最大飛行速度 50 m/s
    D 無(wú)人機(jī)每個(gè)時(shí)隙最大移動(dòng)距離 50 m
    β0 信道距離為1米時(shí)的信道增益 –50 dB
    $ \alpha $ 路徑損耗指數(shù) 2.2
    D 天線間距 $ {\lambda \mathord{\left/ {\vphantom {\lambda 2}} \right. } 2} $
    Pmax Alice的發(fā)射功率上限 1 W
    $ {\hat P_{{\text{U}},\max }} $ 無(wú)人機(jī)的最大AN功率上限 1 W
    $ \sigma _{\text{W}}^2 $ Willie處噪聲功率方差 –120 dBm
    $ \sigma _{\text{B}}^2 $ Bob處噪聲功率方差 –120 dBm
    $ \varepsilon $ Willie確定所需隱蔽性的特定值 0.01
    $ \kappa $ 循環(huán)閾值 10–5
    wB Bob的地面坐標(biāo)(m) [–100,100]T
    wW Willie的地面坐標(biāo)(m) [100,100]T
    wA 基站的地面坐標(biāo)(m) [–100,0]T
    qA 無(wú)人機(jī)起點(diǎn)坐標(biāo)(m) [–300,20]T
    qF 無(wú)人機(jī)終點(diǎn)坐標(biāo)(m) [300,20]T
    下載: 導(dǎo)出CSV
  • [1] YAN Shihao, ZHOU Xiangyun, HU Jinsong, et al. Low probability of detection communication: Opportunities and challenges[J]. IEEE Wireless Communications, 2019, 26(5): 19–25. doi: 10.1109/MWC.001.1900057.
    [2] BASH B A, GOECKEL D, and TOWSLEY D. Limits of reliable communication with low probability of detection on AWGN channels[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1921–1930. doi: 10.1109/JSAC.2013.130923.
    [3] 王承祥, 黃杰, 王海明, 等. 面向6G的無(wú)線通信信道特性分析與建模[J]. 物聯(lián)網(wǎng)學(xué)報(bào), 2020, 4(1): 19–32. doi: 10.11959/j.issn.2096-3750.2020.00155.

    WANG Chengxiang, HUANG Jie, WANG Haiming, et al. 6G oriented wireless communication channel characteristics analysis and modeling[J]. Chinese Journal on Internet of Things, 2020, 4(1): 19–32. doi: 10.11959/j.issn.2096-3750.2020.00155.
    [4] KONG J, DAGEFUS F T, CHOI J, et al. Intelligent reflecting surface assisted covert communication with transmission probability optimization[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1825–1829. doi: 10.1109/LWC.2021.3082841.
    [5] ZHOU Xiaobo, YAN Shihao, WU Qingqing, et al. Joint transmit power and reflection beamforming design for IRS-aided covert communications[C]. 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 2021: 1–6. doi: 10.1109/GLOBECOM46510.2021.9685483.
    [6] DONG Limeng and WANG Huiming. Secure MIMO transmission via intelligent reflecting surface[J]. IEEE Transactions on Wireless Communications 2020, 9(6): 787–790. doi: 10.1109/TWC.2020.3012721.
    [7] CHEN Xin, ZHENG Tongxing, DONG Limeng, et al. Enhancing MIMO covert communications via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2022, 11(1): 33–37. doi: 10.1109/LWC.2021.3119687.
    [8] LV Lu, WU Qingqing, LI Zan, et al. Achieving covert communication by IRS-NOMA[C]. 2021 IEEE/CIC International Conference on Communications in China (ICCC), Xiamen, China, 2021: 421–426. doi: 10.1109/ICCC52777.2021.9580320.
    [9] LV Lu, WU Qingqing, LI Zan, et al. Covert communication in intelligent reflecting surface-assisted NOMA systems: Design, analysis, and optimization[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1735–1750. doi: 10.1109/TWC.2021.3106346.
    [10] WU Yingjie, WANG Shilian, LUO Junshan, et al. Passive covert communications based on reconfigurable intelligent surface[J]. IEEE Wireless Communications Letters, 2022, 11(11): 2445–2449. doi: 10.1109/LWC.2022.3206229.
    [11] 徐勇軍, 高正念, 王茜竹, 等. 基于智能反射面輔助的無(wú)線供電通信網(wǎng)絡(luò)魯棒能效最大化算法[J]. 電子與信息學(xué)報(bào), 2022, 44(7): 2317–2324. doi: 10.11999/JEIT210714.

    XU Yongjun, GAO Zhengnian, WANG Qianzhu, et al. Robust energy efficiency maximization algorithm for intelligent reflecting surface-aided wireless powered-communication networks[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2317–2324. doi: 10.11999/JEIT210714.
    [12] ZENG Yong, ZHANG Rui, and LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933.
    [13] WANG Haichao, WANG Jinlong, CHEN Jin, et al. Network-connected UAV communications: Potentials and challenges[J]. China Communications, 2018, 15(12): 111–121. doi: 10.12676/j.cc.2018.12.009.
    [14] LIU Xuemin, SONG Yaoliang, CHEN Kuiyu, et al. Modulation recognition of low-SNR UAV radar signals based on bispectral slices and GA-BP neural network[J]. Drones, 2023, 7(7): 472. doi: 10.3390/drones7070472.
    [15] ZHOU Xiaobo, YAN Shihao, HU Jinsong, et al. Joint optimization of a UAV's trajectory and transmit power for covert communications[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4276–4290. doi: 10.1109/TSP.2019.2928949.
    [16] JIANG Xu, YANG Zhutian, ZHAO Nan, et al. Resource allocation and trajectory optimization for UAV-enabled multi-user covert communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1989–1994. doi: 10.1109/TVT.2021.3053936.
    [17] CHEN Xinying, CHANG Zheng, TANG Jie, et al. UAV-aided multi-antenna covert communication against multiple wardens[C]. The ICC 2021-IEEE International Conference on Communications, Montreal, Canada, 2021: 1–6. doi: 10.1109/ICC42927.2021.9500951.
    [18] ZHENG Tongxing, YANG Ziteng, WANG Chao, et al. Wireless covert communications aided by distributed cooperative jamming over slow fading channels[J]. IEEE Transactions on Wireless Communications, 2021, 20(11): 7026–7039. doi: 10.1109/TWC.2021.3080382.
    [19] DU Hongyang, NIYATO D, XIE Yuanai, et al. Covert communication for jammer-aided multi-antenna UAV networks[C]. The ICC 2022 - IEEE International Conference on Communications, Seoul, Korea, 2022: 91–96. doi: 10.1109/ICC45855.2022.9838318.
    [20] ZHANG Ran, CHEN Xinying, LIU Mingqian, et al. UAV relay assisted cooperative jamming for covert communications over Rician fading[J]. IEEE Transactions on Vehicular Technology, 2022, 71(7): 7936–7941. doi: 10.1109/TVT.2022.3164051.
    [21] 周小波, 于輝, 彭旭, 等. 智能反射面輔助及人工噪聲增強(qiáng)的無(wú)線隱蔽通信[J]. 電子與信息學(xué)報(bào), 2022, 44(7): 2392–2399. doi: 10.11999/JEIT211618.

    ZHOU Xiaobo, YU Hui, PENG Xu, et al. Wireless covert communications based on intelligent reflecting surface aided and artificial noise enhanced[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2392–2399. doi: 10.11999/JEIT211618.
    [22] WU Chaoyi, YAN Shihao, ZHOU Xiaobo, et al. Intelligent reflecting surface (IRS)-aided covert communication with warden’s statistical CSI[J]. IEEE Wireless Communications Letters, 2021, 10(7): 1449–1453. doi: 10.1109/LWC.2021.3069778.
  • 加載中
圖(4) / 表(2)
計(jì)量
  • 文章訪問(wèn)數(shù):  529
  • HTML全文瀏覽量:  201
  • PDF下載量:  92
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-07-29
  • 修回日期:  2024-12-01
  • 網(wǎng)絡(luò)出版日期:  2024-12-09
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回