一種基于無(wú)人機(jī)與智能反射面的隱蔽通信系統(tǒng)研究
doi: 10.11999/JEIT240663 cstr: 32379.14.JEIT240663
-
1.
南京理工大學(xué)電子工程與光電技術(shù)學(xué)院 南京 210094
-
2.
海南大學(xué)信息與通信工程學(xué)院 海口 570228
-
3.
南京郵電大學(xué)電子與光學(xué)工程學(xué)院、柔性電子(未來(lái)技術(shù))學(xué)院 南京 210042
-
4.
中國(guó)聯(lián)合網(wǎng)絡(luò)通信有限公司蘇州市分公司 蘇州 215100
An Intelligent Reflecting Surface Assisted Covert Communication System with a Cooperative Unmanned Aerial Vehicle
-
1.
School of Electronic and Opticcal Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
-
2.
School of Information and Communication Engineering, Hainan University, Haikou 570228, China
-
3.
College of Electronic and Opticcal Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210094, China
-
4.
China United Network Communication Group Co., Ltd. Suzhou Branch, Suzhou 215100, China
-
摘要: 隱蔽通信可以在被監(jiān)控的情況下安全傳輸數(shù)據(jù),是網(wǎng)絡(luò)安全領(lǐng)域重要分支。然而,實(shí)際通信系統(tǒng)具有通信環(huán)境復(fù)雜、覆蓋范圍廣等特點(diǎn),這使得隱蔽通信很難部署。為此,該文提出一種基于智能反射面(IRS)與無(wú)人機(jī)(UAV)輔助的無(wú)線隱蔽通信系統(tǒng)。引入智能反射面作為中繼節(jié)點(diǎn)轉(zhuǎn)發(fā)發(fā)送者的信號(hào),使用無(wú)人機(jī)作為發(fā)送者的友元節(jié)點(diǎn),該友元節(jié)點(diǎn)通過(guò)發(fā)送人工噪聲來(lái)干擾惡意用戶對(duì)隱蔽通信的檢測(cè)。在監(jiān)聽(tīng)者接收噪聲不確定的情況下,推導(dǎo)了最小錯(cuò)誤檢測(cè)概率,并與中斷概率作為約束,以最大化隱蔽通信速率為目標(biāo) ,建立了系統(tǒng)的優(yōu)化問(wèn)題,采用Dinkelbach算法求解。仿真結(jié)果表明,當(dāng)智能反射陣元的相位、干擾無(wú)人機(jī)的發(fā)射能量取得最優(yōu)時(shí),所提系統(tǒng)的隱蔽通信速率比單獨(dú)配置智能反射面的無(wú)線通信系統(tǒng)平均提高了37.9%,比單獨(dú)配置無(wú)人機(jī)的系統(tǒng)評(píng)價(jià)速率提高了1.17倍。
-
關(guān)鍵詞:
- 信息安全 /
- 隱蔽通信 /
- 智能反射面 /
- 無(wú)人機(jī)
Abstract:Objective: Covert communication is a crucial area within network security, facilitating secure data transmission in monitored environments. Nevertheless, practical communication systems face challenges such as complex communication environments and extensive coverage areas. In recent years, Unmanned Aerial Vehicles (UAVs) have gained popularity in both commercial and military applications due to their flexibility, cost-effectiveness, and diverse applications. Additionally, Intelligent Reflection Surface (IRS)-assisted wireless communications have attracted significant attention, as IRS can be deployed in hostile communication environments while ensuring reliable transmission. Consequently, the exploration of hybrid IRS and UAV systems for the design of covert wireless communication systems presents a promising research avenue. Methods: This paper proposes a wireless covert communication system enhanced by an IRS and a UAV. In this configuration, the IRS functions as a relay node to transmit signals from the transmitter. The UAV serves as a cooperative relay node, facilitating not only the forwarding of covert messages to the intended receiver but also generating artificial noise to impede the detection of covert communication by malicious users. Under conditions of uncertainty regarding the received noise at the receiver, the minimum error detection probability is derived, and the system optimization problem is formulated with the objective of maximizing the covert communication rate while treating interruption probability as a constraint. Subsequently, the Dinkelbach-based approach is utilized to address the optimization problem. Results and Discussions: The key contributions of this research are as follows. First, a wireless covert communication system is developed using an IRS and an UAV. In this system, the IRS forwards covert messages from the transmitter to the receiver, while the UAV disrupts potential adversaries attempting to intercept secure communications. The integration of the IRS improves the covert communication rate, and the UAV-assisted design provides flexibility for deployment across diverse environments. The transmitter serves as the coordinator, managing both the UAV and IRS by transmitting control commands and collecting operational parameters. Second, the minimum detection error probability is derived under conditions of receiver uncertainty regarding noise, with the coordinates of the UAV and the transmitter assumed to be known. This derivation includes calculations of the False Alarm Probability (FAP) and the Missed Detection Probability (MDP) associated with the monitoring process. Third, a joint optimization problem is formulated to maximize the covert rate of the communication system. This problem optimizes the UAV’s trajectory, the IRS phase, and the transmit power while satisfying constraints related to the derived minimum detection error probability, maximum transmit power, and UAV mobility. The problem is restructured into a convex formulation by dividing it into two steps: optimization of the transmit power and UAV trajectory. Fourth, an iterative algorithm is developed to address the optimization challenge, employing the Successive Convex Approximation (SCA) and Dinkelbach methods. The Dinkelbach method is used to reformulate the upper bound of the optimization variables into a convex problem. Simulation results demonstrate that the maximum covert rate is achieved when the IRS phase, UAV trajectory, and transmit power are jointly optimized. Conclusions: In conclusion, the research establishes the implementation of an IRS-aided covert communication system utilizing a cooperative UAV, suitable for deployment in complex environments. Additionally, a closed-form expression for the Directly Emitted Power (DEP) of covert communication for the monitoring device has been derived, taking into account the uncertainty of transmit power. A joint optimization problem has been formulated to optimize the phases of the IRS units, the jamming power of the UAV, and the transmitting power of the transmitter, while satisfying constraints related to the optimal DEP of Willie, the transmit power of the transmitter, and the transmit power of the AN. Simulation results indicate that the system’s covertness and covert rate improve with an increased number of IRS units, extended UAV flight time, and higher interference power. Future research should also explore the deployment of this system in complex environments, focusing on the dynamic adjustment of the IRS phase units in conjunction with UAVs. -
1 基于SCA和Dinkelbach技術(shù)的交替優(yōu)化算法
(1) 初始化,RB,0, $ \eta $和迭代索引參數(shù)k=1; (2) 利用式(26)得到最優(yōu)$ {\boldsymbol{\varTheta}} $。 (3) 重復(fù) (4) 通過(guò)得到$ \left( {{{\boldsymbol{Q}}_{k - 1}},{\boldsymbol{\varTheta}} } \right) $,解決式(33)更新$ \left( {{P_k},{{\hat P}_{{\text{U}},k}}} \right) $; (5) 根據(jù)求出的$ \left( {{P_k},{{\hat P}_{{\text{U}},k}}} \right) $,利用式(31)更新因子$ \eta $; (6) 通過(guò)得到的$ \left( {{\boldsymbol{\varTheta}} ,{P_k},{{\hat P}_{{\text{U}},k}}} \right) $,利用式(24a)更新RB,k; (7) 設(shè)置k$ \leftarrow $k+1; (8) 直到$ \left| {{R_{{\mathrm{B}},k}} - {R_{{\mathrm{B}},k - 1}}} \right| \le \kappa $。 下載: 導(dǎo)出CSV
表 1 仿真的具體參數(shù)設(shè)置
參數(shù) 參數(shù)描述 取值 N 無(wú)人機(jī)飛行時(shí)間 30 s T 無(wú)人機(jī)飛行時(shí)隙個(gè)數(shù) 30 L 每個(gè)時(shí)隙持續(xù)時(shí)間 1 s H 無(wú)人機(jī)的固定飛行高度 50 m M 智能反射面反射單元個(gè)數(shù) 30 Vmax 無(wú)人機(jī)的最大飛行速度 50 m/s D 無(wú)人機(jī)每個(gè)時(shí)隙最大移動(dòng)距離 50 m β0 信道距離為1米時(shí)的信道增益 –50 dB $ \alpha $ 路徑損耗指數(shù) 2.2 D 天線間距 $ {\lambda \mathord{\left/ {\vphantom {\lambda 2}} \right. } 2} $ Pmax Alice的發(fā)射功率上限 1 W $ {\hat P_{{\text{U}},\max }} $ 無(wú)人機(jī)的最大AN功率上限 1 W $ \sigma _{\text{W}}^2 $ Willie處噪聲功率方差 –120 dBm $ \sigma _{\text{B}}^2 $ Bob處噪聲功率方差 –120 dBm $ \varepsilon $ Willie確定所需隱蔽性的特定值 0.01 $ \kappa $ 循環(huán)閾值 10–5 wB Bob的地面坐標(biāo)(m) [–100,100]T wW Willie的地面坐標(biāo)(m) [100,100]T wA 基站的地面坐標(biāo)(m) [–100,0]T qA 無(wú)人機(jī)起點(diǎn)坐標(biāo)(m) [–300,20]T qF 無(wú)人機(jī)終點(diǎn)坐標(biāo)(m) [300,20]T 下載: 導(dǎo)出CSV
-
[1] YAN Shihao, ZHOU Xiangyun, HU Jinsong, et al. Low probability of detection communication: Opportunities and challenges[J]. IEEE Wireless Communications, 2019, 26(5): 19–25. doi: 10.1109/MWC.001.1900057. [2] BASH B A, GOECKEL D, and TOWSLEY D. Limits of reliable communication with low probability of detection on AWGN channels[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1921–1930. doi: 10.1109/JSAC.2013.130923. [3] 王承祥, 黃杰, 王海明, 等. 面向6G的無(wú)線通信信道特性分析與建模[J]. 物聯(lián)網(wǎng)學(xué)報(bào), 2020, 4(1): 19–32. doi: 10.11959/j.issn.2096-3750.2020.00155.WANG Chengxiang, HUANG Jie, WANG Haiming, et al. 6G oriented wireless communication channel characteristics analysis and modeling[J]. Chinese Journal on Internet of Things, 2020, 4(1): 19–32. doi: 10.11959/j.issn.2096-3750.2020.00155. [4] KONG J, DAGEFUS F T, CHOI J, et al. Intelligent reflecting surface assisted covert communication with transmission probability optimization[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1825–1829. doi: 10.1109/LWC.2021.3082841. [5] ZHOU Xiaobo, YAN Shihao, WU Qingqing, et al. Joint transmit power and reflection beamforming design for IRS-aided covert communications[C]. 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 2021: 1–6. doi: 10.1109/GLOBECOM46510.2021.9685483. [6] DONG Limeng and WANG Huiming. Secure MIMO transmission via intelligent reflecting surface[J]. IEEE Transactions on Wireless Communications 2020, 9(6): 787–790. doi: 10.1109/TWC.2020.3012721. [7] CHEN Xin, ZHENG Tongxing, DONG Limeng, et al. Enhancing MIMO covert communications via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2022, 11(1): 33–37. doi: 10.1109/LWC.2021.3119687. [8] LV Lu, WU Qingqing, LI Zan, et al. Achieving covert communication by IRS-NOMA[C]. 2021 IEEE/CIC International Conference on Communications in China (ICCC), Xiamen, China, 2021: 421–426. doi: 10.1109/ICCC52777.2021.9580320. [9] LV Lu, WU Qingqing, LI Zan, et al. Covert communication in intelligent reflecting surface-assisted NOMA systems: Design, analysis, and optimization[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1735–1750. doi: 10.1109/TWC.2021.3106346. [10] WU Yingjie, WANG Shilian, LUO Junshan, et al. Passive covert communications based on reconfigurable intelligent surface[J]. IEEE Wireless Communications Letters, 2022, 11(11): 2445–2449. doi: 10.1109/LWC.2022.3206229. [11] 徐勇軍, 高正念, 王茜竹, 等. 基于智能反射面輔助的無(wú)線供電通信網(wǎng)絡(luò)魯棒能效最大化算法[J]. 電子與信息學(xué)報(bào), 2022, 44(7): 2317–2324. doi: 10.11999/JEIT210714.XU Yongjun, GAO Zhengnian, WANG Qianzhu, et al. Robust energy efficiency maximization algorithm for intelligent reflecting surface-aided wireless powered-communication networks[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2317–2324. doi: 10.11999/JEIT210714. [12] ZENG Yong, ZHANG Rui, and LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933. [13] WANG Haichao, WANG Jinlong, CHEN Jin, et al. Network-connected UAV communications: Potentials and challenges[J]. China Communications, 2018, 15(12): 111–121. doi: 10.12676/j.cc.2018.12.009. [14] LIU Xuemin, SONG Yaoliang, CHEN Kuiyu, et al. Modulation recognition of low-SNR UAV radar signals based on bispectral slices and GA-BP neural network[J]. Drones, 2023, 7(7): 472. doi: 10.3390/drones7070472. [15] ZHOU Xiaobo, YAN Shihao, HU Jinsong, et al. Joint optimization of a UAV's trajectory and transmit power for covert communications[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4276–4290. doi: 10.1109/TSP.2019.2928949. [16] JIANG Xu, YANG Zhutian, ZHAO Nan, et al. Resource allocation and trajectory optimization for UAV-enabled multi-user covert communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1989–1994. doi: 10.1109/TVT.2021.3053936. [17] CHEN Xinying, CHANG Zheng, TANG Jie, et al. UAV-aided multi-antenna covert communication against multiple wardens[C]. The ICC 2021-IEEE International Conference on Communications, Montreal, Canada, 2021: 1–6. doi: 10.1109/ICC42927.2021.9500951. [18] ZHENG Tongxing, YANG Ziteng, WANG Chao, et al. Wireless covert communications aided by distributed cooperative jamming over slow fading channels[J]. IEEE Transactions on Wireless Communications, 2021, 20(11): 7026–7039. doi: 10.1109/TWC.2021.3080382. [19] DU Hongyang, NIYATO D, XIE Yuanai, et al. Covert communication for jammer-aided multi-antenna UAV networks[C]. The ICC 2022 - IEEE International Conference on Communications, Seoul, Korea, 2022: 91–96. doi: 10.1109/ICC45855.2022.9838318. [20] ZHANG Ran, CHEN Xinying, LIU Mingqian, et al. UAV relay assisted cooperative jamming for covert communications over Rician fading[J]. IEEE Transactions on Vehicular Technology, 2022, 71(7): 7936–7941. doi: 10.1109/TVT.2022.3164051. [21] 周小波, 于輝, 彭旭, 等. 智能反射面輔助及人工噪聲增強(qiáng)的無(wú)線隱蔽通信[J]. 電子與信息學(xué)報(bào), 2022, 44(7): 2392–2399. doi: 10.11999/JEIT211618.ZHOU Xiaobo, YU Hui, PENG Xu, et al. Wireless covert communications based on intelligent reflecting surface aided and artificial noise enhanced[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2392–2399. doi: 10.11999/JEIT211618. [22] WU Chaoyi, YAN Shihao, ZHOU Xiaobo, et al. Intelligent reflecting surface (IRS)-aided covert communication with warden’s statistical CSI[J]. IEEE Wireless Communications Letters, 2021, 10(7): 1449–1453. doi: 10.1109/LWC.2021.3069778. -