面向6G可重構(gòu)智能超表面使能的近場(chǎng)海洋通信信道建模與信號(hào)傳播機(jī)理研究
doi: 10.11999/JEIT240518 cstr: 32379.14.JEIT240518
-
1.
南京信息工程大學(xué)人工智能學(xué)院 南京 210044
-
2.
東南大學(xué)移動(dòng)通信國(guó)家重點(diǎn)實(shí)驗(yàn)室 南京 210096
-
3.
南京航空航天大學(xué)電子信息工程學(xué)院 南京 210016
-
4.
海南大學(xué)信息與通信工程學(xué)院 ??? 570228
-
5.
英國(guó)肯特大學(xué)工學(xué)院肯特郡坎特伯雷市 CT2 7NT
Research on Channel Modeling and Characteristics Analysis for RIS-Enabled Near-Field Marine Communications Towards 6G
-
1.
School of Artificial Intelligence/School of Future Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
-
2.
National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
-
3.
College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
-
4.
School of Information and Communication Engineering, Hainan University, Haikou 570228, China
-
5.
School of Engineering, University of Kent, Canterbury CT2 7NT, U.K
-
摘要: 可重構(gòu)智能超表面(RIS)作為6G移動(dòng)通信中的潛在關(guān)鍵技術(shù)之一,具有低成本、低能耗和易于部署等特點(diǎn)。該文提出將RIS技術(shù)引入至海洋無線通信場(chǎng)景中,可使無線傳輸環(huán)境從不可控變?yōu)榭煽亍H欢?,現(xiàn)有的信道模型難以充分揭示RIS使能基站-海面無人船近場(chǎng)通信信號(hào)獨(dú)特的傳輸機(jī)理,信道特性分析方法與建模理論難以在計(jì)算準(zhǔn)確性與復(fù)雜度之間實(shí)現(xiàn)平衡。因此,該文通過對(duì)RIS使能近場(chǎng)海洋通信中各子信道進(jìn)行建模,提出空時(shí)頻多域信號(hào)傳播機(jī)理分析方法,建立RIS使能基站-無人船近場(chǎng)海洋通信參數(shù)化統(tǒng)計(jì)信道模型,解決現(xiàn)有RIS信道建模方法難以兼顧精度與效率的技術(shù)瓶頸問題,提高RIS使能近場(chǎng)海洋通信系統(tǒng)設(shè)計(jì)過程中的信道模型匹配效率,為我國(guó)6G移動(dòng)通信產(chǎn)業(yè)的快速發(fā)展提供技術(shù)支撐。
-
關(guān)鍵詞:
- 可重構(gòu)智能超表面 /
- 近場(chǎng)通信 /
- 信道模型 /
- 海洋通信
Abstract: Reconfigurable Intelligent Surfaces (RIS) is considered as one of the potential key technologies for 6G mobile communications, which offers advantages such as low cost, low energy consumption, and easy deployment. By integrating RIS technology into marine wireless channels, it has the capability to convert the unpredictable wireless transmission environment into a manageable one. However, current channel models are struggling to accurately depict the unique signal transmission mechanisms of RIS-enabled base station to ship channels in marine communication scenarios, resulting in challenges in achieving a balance between accuracy and complexity for channel characterization and theoretical establishment. Therefore, this paper develops a segmented channel modeling method for near-field RIS-enabled marine communications, and then proposed a multi-domain joint parameterized statistical channel model for RIS-enabled marine communications. This approach focus on addressing the technical bottleneck of existing RIS channel modeling methods that face difficulties in achieving a balance between accuracy and efficiency, ultimately facilitating the rapid development of the 6G mobile communication industry in China. -
[1] JIANG Wei, HAN Bin, HABIBI M A, et al. The road towards 6G: A comprehensive survey[J]. IEEE Open Journal of the Communications Society, 2021, 2: 334–366. doi: 10.1109/OJCOMS.2021.3057679. [2] YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6. [3] 何雨蓓. 6G海洋通信信道特性分析與建模[D]. [博士論文], 山東大學(xué), 2023. doi: 10.27272/d.cnki.gshdu.2023.007461.HE Yubei. Channel characteristic analysis and channel modeling for 6G maritime communications[D]. [Ph. D. dissertation], Shandong University, 2023. doi: 10.27272/d.cnki.gshdu.2023.007461. [4] JIANG Hao, MUKHERJEE M, ZHOU Jie, et al. Channel modeling and characteristics for 6G wireless communications[J]. IEEE Network, 2021, 35(1): 296–303. doi: 10.1109/MNET.011.2000348. [5] 孫華麗, 孟維曉, 張乃通. 空時(shí)頻MIMO信道建模與實(shí)現(xiàn)[J]. 電子與信息學(xué)報(bào), 2008, 30(9): 2279–2282. doi: 10.3724/SP.J.1146.2007.00209.SUN Huali, MENG Weixiao, and ZHANG Naitong. Modeling and implementation of space-time-frequency MIMO channel[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2279–2282. doi: 10.3724/SP.J.1146.2007.00209. [6] 陳天貝, 李娜, 陶小峰. 低開銷智能反射面輔助無線通信研究綜述[J]. 中興通訊技術(shù), 2023, 29(6): 29–38. doi: 10.12142/ZTETJ.202306006.CHEN Tianbei, LI Na, and TAO Xiaofeng. Survey on low-overhead reconfigurable intelligent surface assisted wireless communication[J]. ZTE Technology Journal, 2023, 29(6): 29–38. doi: 10.12142/ZTETJ.202306006. [7] 李貴勇, 杜一舟, 王丹. 可重構(gòu)智能表面輔助的多用戶通信寬帶信道估計(jì)[J]. 電子與信息學(xué)報(bào), 2023, 45(7): 2443–2450. doi: 10.11999/JEIT220775.LI Guiyong, DU Yizhou, and WANG Dan. Wideband channel estimation for multiuser communication based on reconfigurable intelligent surface assisted[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2443–2450. doi: 10.11999/JEIT220775. [8] 張?jiān)阼? 江浩. 智能超表面使能無人機(jī)高能效通信信道建模與傳輸機(jī)理分析[J]. 電子學(xué)報(bào), 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352. [9] BASAR E and YILDIRIM I. Reconfigurable intelligent surfaces for future wireless networks: A channel modeling perspective[J]. IEEE Wireless Communications, 2021, 28(3): 108–114. doi: 10.1109/MWC.001.2000338. [10] 黃子軒, 姚劉嘉, 游昌盛. 超大規(guī)模智能反射面輔助的近場(chǎng)移動(dòng)通信研究[J]. 無線電通信技術(shù), 2024, 50(2): 263–268. doi: 10.3969/j.issn.1003-3114.2024.02.006.HUANG Zixuan, YAO Liujia, and YOU Changsheng. Research on extremely large-scale IRS assisted near-field mobile communications[J]. Radio Communications Technology, 2024, 50(2): 263–268. doi: 10.3969/j.issn.1003-3114.2024.02.006. [11] ZHANG Haiyang, SHLEZINGER N, GUIDI F, et al. 6G wireless communications: From far-field beam steering to near-field beam focusing[J]. IEEE Communications Magazine, 2023, 61(4): 72–77. doi: 10.1109/MCOM.001.2200259. [12] CUI Mingyao, WU Zidong, LU Yu, et al. Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions[J]. IEEE Communications Magazine, 2023, 61(1): 40–46. doi: 10.1109/MCOM.004.2200136. [13] YUAN Jiwei, QIAN Hongbao, and WANG Donghai. Study on application of channel propagation model for maritime communication[C]. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers, Dalian, China, 2022: 855–859. doi: 10.1109/IPEC54454.2022.9777553. [14] MA Zhangfeng, AI Bo, HE Ruisi, et al. Modeling and analysis of MIMO multipath channels with aerial intelligent reflecting surface[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(10): 3027–3040. doi: 10.1109/JSAC.2022.3196112. [15] SUN Guiqi, HE Ruisi, MA Zhangfeng, et al. A 3D geometry-Based non-stationary MIMO channel model for RIS-assisted communications[C]. 2021 IEEE 94th Vehicular Technology Conference, Norman, OK, USA, 2021: 1–5. doi: 10.1109/VTC2021-Fall52928.2021.9625374. [16] SUN Yingzhuo, WANG Chengxiang, HUANG Jie, et al. A 3D non-stationary channel model for 6G wireless systems employing intelligent reflecting surfaces with practical phase shifts[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 496–510. doi: 10.1109/TCCN.2021.3075438. -