一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

面向任務(wù)驅(qū)動(dòng)的動(dòng)態(tài)可伸縮空間信息網(wǎng)絡(luò)架構(gòu)設(shè)計(jì)與優(yōu)化

何立軍 賈子曄 李世銀 汪彥婷 王麗 劉磊

何立軍, 賈子曄, 李世銀, 汪彥婷, 王麗, 劉磊. 面向任務(wù)驅(qū)動(dòng)的動(dòng)態(tài)可伸縮空間信息網(wǎng)絡(luò)架構(gòu)設(shè)計(jì)與優(yōu)化[J]. 電子與信息學(xué)報(bào), 2024, 46(12): 4409-4421. doi: 10.11999/JEIT240505
引用本文: 何立軍, 賈子曄, 李世銀, 汪彥婷, 王麗, 劉磊. 面向任務(wù)驅(qū)動(dòng)的動(dòng)態(tài)可伸縮空間信息網(wǎng)絡(luò)架構(gòu)設(shè)計(jì)與優(yōu)化[J]. 電子與信息學(xué)報(bào), 2024, 46(12): 4409-4421. doi: 10.11999/JEIT240505
HE Lijun, JIA Ziye, LI Shiyin, WANG Yanting, WANG Li, LIU Lei. Design and Optimization of Task-driven Dynamic Scalable Network Architecture in Spatial Information Networks[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4409-4421. doi: 10.11999/JEIT240505
Citation: HE Lijun, JIA Ziye, LI Shiyin, WANG Yanting, WANG Li, LIU Lei. Design and Optimization of Task-driven Dynamic Scalable Network Architecture in Spatial Information Networks[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4409-4421. doi: 10.11999/JEIT240505

面向任務(wù)驅(qū)動(dòng)的動(dòng)態(tài)可伸縮空間信息網(wǎng)絡(luò)架構(gòu)設(shè)計(jì)與優(yōu)化

doi: 10.11999/JEIT240505 cstr: 32379.14.JEIT240505
基金項(xiàng)目: 國家自然科學(xué)基金(62201463, 61901388),江蘇省自然科學(xué)基金(BK20220883)
詳細(xì)信息
    作者簡介:

    何立軍:男,副教授,博士,研究方向?yàn)榭仗斓匾惑w化網(wǎng)絡(luò)、無人機(jī)組網(wǎng)、無線通信

    賈子曄:女,副教授,博士,研究方向?yàn)榈涂罩锹?lián)網(wǎng)、無人機(jī)、空天地一體化網(wǎng)絡(luò)

    李世銀:男,教授,博士,研究方向?yàn)闊o線通信、可見光通信定位一體化、智能感知與精確定位、礦山互聯(lián)網(wǎng)、語義通信

    汪彥婷:女,講師,博士,研究方向?yàn)檫吘売?jì)算、邊緣計(jì)算、群智網(wǎng)絡(luò)、模型剪枝

    王麗:女,講師,博士,研究方向?yàn)橐苿?dòng)通信網(wǎng)絡(luò)、物聯(lián)網(wǎng)軟件技術(shù)、多源異構(gòu)信息融合

    劉磊:男,講師,博士,研究方向?yàn)闊o線網(wǎng)絡(luò)性能分析、非正交多址接入、干擾管理技術(shù)

    通訊作者:

    李世銀 lishiyin@cumt.edu.cn

  • 中圖分類號(hào): TN929.5

Design and Optimization of Task-driven Dynamic Scalable Network Architecture in Spatial Information Networks

Funds: The National Natural Science Foundation of China (62201463, 61901388), The Natural Science Foundation of Jiangsu Province of China (BK20220883)
  • 摘要: 現(xiàn)階段空間信息網(wǎng)絡(luò)中各衛(wèi)星子系統(tǒng)各成體系且相互割裂,使得網(wǎng)絡(luò)呈現(xiàn)封閉、分裂態(tài)勢,形成嚴(yán)峻資源壁壘,造成空間資源協(xié)同應(yīng)用能力弱以及網(wǎng)絡(luò)擴(kuò)展能力低等難題。傳統(tǒng)架構(gòu)設(shè)計(jì)采用對(duì)現(xiàn)階段空間網(wǎng)絡(luò)架構(gòu)的“完全顛覆”的思路,大大增加了實(shí)際部署的難度。為此,該文立足于衛(wèi)星網(wǎng)絡(luò)現(xiàn)狀,采取“按步驟分階段升級(jí)”的思路,促進(jìn)現(xiàn)有網(wǎng)絡(luò)架構(gòu)的演進(jìn),從任務(wù)驅(qū)動(dòng)角度開展動(dòng)態(tài)可伸縮空間信息網(wǎng)絡(luò)架構(gòu)模型研究,實(shí)現(xiàn)空間資源在各衛(wèi)星子系統(tǒng)間高效動(dòng)態(tài)共享,促進(jìn)空間資源根據(jù)任務(wù)需求變化而動(dòng)態(tài)高效匯聚。首先,提出分階段實(shí)現(xiàn)的網(wǎng)絡(luò)架構(gòu)模型,旨在兼容和升級(jí)現(xiàn)有網(wǎng)絡(luò)架構(gòu)。隨后,介紹核心部件網(wǎng)絡(luò)資源協(xié)調(diào)器的詳細(xì)設(shè)計(jì),包括網(wǎng)絡(luò)結(jié)構(gòu)與工作協(xié)議、超幀結(jié)構(gòu)以及高效的網(wǎng)絡(luò)資源動(dòng)態(tài)分配策略,實(shí)現(xiàn)空間數(shù)據(jù)的高效傳輸。仿真結(jié)果表明,所提網(wǎng)絡(luò)架構(gòu)實(shí)現(xiàn)了網(wǎng)絡(luò)資源高效共享,大大提升空間信息網(wǎng)絡(luò)的網(wǎng)絡(luò)性能。
  • 圖  1  天地協(xié)同網(wǎng)絡(luò)架構(gòu)示意圖

    圖  2  網(wǎng)絡(luò)架構(gòu)分階段演進(jìn)

    圖  3  網(wǎng)絡(luò)資源協(xié)調(diào)器網(wǎng)絡(luò)結(jié)構(gòu)與工作流程設(shè)計(jì)

    圖  4  基于任務(wù)驅(qū)動(dòng)的超幀結(jié)構(gòu)

    圖  5  網(wǎng)絡(luò)模型結(jié)構(gòu)示意圖

    圖  6  網(wǎng)絡(luò)卸載數(shù)據(jù)量隨控制變量$ V $的收斂過程

    圖  7  網(wǎng)絡(luò)性能隨時(shí)隙的變化趨勢

    圖  8  網(wǎng)絡(luò)卸載數(shù)量隨衛(wèi)星天線發(fā)射功率的變化趨勢

    圖  9  不同方案下的網(wǎng)絡(luò)性能比較

    1  基于任務(wù)驅(qū)動(dòng)的動(dòng)態(tài)可伸縮空間信息網(wǎng)絡(luò)架構(gòu)

     (1)信息輸入:初始化隊(duì)列$ {\boldsymbol{Q}}(t) = \{ {Q_n}(t)\} $
     (2)資源感知:資源協(xié)調(diào)器在超幀$ t $內(nèi)的時(shí)隙0:(1)收集物理網(wǎng)絡(luò)信息計(jì)算衛(wèi)星與數(shù)傳站之間的時(shí)間窗口信息;(2)收集卸載任務(wù)請(qǐng)求,結(jié)合
     時(shí)間窗口信息,構(gòu)建卸載任務(wù)信息;
     (3)算法執(zhí)行:在超幀$ t $的時(shí)隙1內(nèi):
       (a)構(gòu)建優(yōu)化問題$ {\text{P6}} $,調(diào)用Kuhn-Munkres 算法求解最優(yōu)變量值$ {{\boldsymbol{x}}^{\rm{opt}}} $;
       (b)基于最優(yōu)變量值$ {{\boldsymbol{x}}^{\rm{opt}}} $,構(gòu)建優(yōu)化問題$ {\text{P8}} $,并執(zhí)行如下流程求解最優(yōu)變量值$ ({{\boldsymbol{y}}}^{\text{opt}},{{\boldsymbol{f}}}^{\text{opt}}) $,其中$ {{\boldsymbol{y}}}^{\text{opt}}=\left\{({{\boldsymbol{y}}}_{s,n}^{t}{)}^{\text{opt}}\right\} $和$ {{\boldsymbol{f}}}^{\text{opt}}=\left\{({f}_{s}^{t}{)}^{\text{opt}}\right\} $;
       For $ s = 1:S $
        根據(jù)式(14)求出 $ ({y}_{s,n}^{t}{)}^{\text{opt}} $;
         $ ({f}_{s}^{t}{)}^{\text{opt}}={{\displaystyle \sum _{h\in \mathcal{H}}({x}_{s,h}^{t})}}^{\text{opt}}{C}_{s,h}^{t} $
       End
     (4)策略分發(fā):資源協(xié)調(diào)器將$ {{\boldsymbol{x}}^{\rm{opt}}} $和$ ({{\boldsymbol{y}}}^{\text{opt}},{{\boldsymbol{f}}}^{\text{opt}}) $轉(zhuǎn)化為指令,推送到實(shí)際衛(wèi)星子系統(tǒng),進(jìn)而構(gòu)建虛擬數(shù)傳站;
     (5)數(shù)據(jù)卸載:虛擬衛(wèi)星子系統(tǒng)根據(jù)其網(wǎng)絡(luò)資源和任務(wù)信息執(zhí)行數(shù)據(jù)卸載;
     (6)超幀索引更新:檢測超幀$ t $的時(shí)長是否執(zhí)行結(jié)束,若結(jié)束則更新超幀索引:$ t = t + 1 $,根據(jù)式(5)更新隊(duì)列$ {\boldsymbol{Q}}(t) $,并返回步驟(2).
    下載: 導(dǎo)出CSV
  • [1] HU Fei, YANG Chaowei, SCHNASE J L, et al. Climatespark: An in-memory distributed computing framework for big climate data analytics[J]. Computers & Geosciences, 2018, 115: 154–166. doi: 10.1016/j.cageo.2018.03.011.
    [2] LI Deren.On the space and sky information real-time intelligent service system with deep integration of military and civilian[J]. Civil-Military Integration on Cyberspace, 2018(12):12-15.

    LI Deren.On the space and sky information real-time intelligent service system with deep integration of military and civilian[J]. Civil-Military Integration on Cyberspace, 2018(12):12-15.
    [3] 張威, 張更新, 茍亮. 空間信息網(wǎng)絡(luò)中的星座設(shè)計(jì)方法研究[J]. 中興通訊技術(shù), 2016, 22(4): 19–23,45. doi: 10.3969/j.issn.1009-6868.2016.04.004.

    ZHANG Wei, ZHANG Gengxin, and GOU Liang. Satellite constellation design in space information network[J]. ZTE Technology Journal, 2016, 22(4): 19–23,45. doi: 10.3969/j.issn.1009-6868.2016.04.004.
    [4] ZHANG Wei, ZHANG Gengxin, XIE Zhidong, et al. A hierarchical autonomous system based space information network architecture and topology control[J]. Journal of Communications and Information Networks, 2016, 1(3): 77–89. doi: 10.11959/j.issn.2096-1081.2016.017.
    [5] SUN Jiayu, QI Weijing, SONG Qingyang, et al. A new architecture for space information networks based on an MEO constellation optical backbone network[C]. Asia Communications and Photonics Conference 2017, Guangzhou, China, 2017: Su3C. 3. doi: 10.1364/ACPC.2017.Su3C.3.
    [6] MA Ting, QIAN Bo, QIN Xiaohan, et al. Satellite-terrestrial integrated 6G: An ultra-dense LEO networking management architecture[J]. IEEE Wireless Communications, 2024, 31(1): 62–69. doi: 10.1109/MWC.011.2200198.
    [7] ZHENG Gao, WANG Ning, and TAFAZOLLI R R. SDN in space: A virtual data-plane addressing scheme for supporting LEO satellite and terrestrial networks integration[J]. IEEE/ACM Transactions on Networking, 2024, 32(2): 1781–1796. doi: 10.1109/TNET.2023.3330672.
    [8] YANG Huiting, LIU Wei, WANG Xiangfeng, et al. Group sparse space information network with joint virtual network function deployment and maximum flow routing strategy[J]. IEEE Transactions on Wireless Communications, 2023, 22(8): 5291–5305. doi: 10.1109/TWC.2022.3233067.
    [9] XIA Qiufen, WANG Guijie, XU Zichuan, et al. Efficient algorithms for service chaining in NFV-enabled satellite edge networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(5): 5677–5694. doi: 10.1109/TMC.2023.3312352.
    [10] BAO Jinzhen, ZHAO Baokang, YU Wangrong, et al. OpenSAN: A software-defined satellite network architecture[C]. Proceedings of the 2014 ACM Conference on SIGCOMM, Chicago, USA, 2014: 347–348. doi: 10.1145/2619239.2631454.
    [11] YANG Bowei, WU Yue, CHU Xiaoli, et al. Seamless handover in software-defined satellite networking[J]. IEEE Communications Letters, 2016, 20(9): 1768–1771. doi: 10.1109/LCOMM.2016.2585482.
    [12] FENG Jing, JIANG Lei, SHEN Ye, et al. A scheme for software defined ORS satellite networking[C]. 2014 IEEE Fourth International Conference on Big Data and Cloud Computing, Sydney, Australia, 2014: 716–721. doi: 10.1109/BDCloud.2014.19.
    [13] FENG Bohao, ZHOU Huachun, ZHANG Hongke, et al. HetNet: A flexible architecture for heterogeneous satellite-terrestrial networks[J]. IEEE Network, 2017, 31(6): 86–92. doi: 10.1109/MNET.2017.1600330.
    [14] SHENG Min, WANG Yu, LI Jiandong, et al. Toward a flexible and reconfigurable broadband satellite network: Resource management architecture and strategies[J]. IEEE Wireless Communications, 2017, 24(4): 127–133. doi: 10.1109/MWC.2017.1600173.
    [15] LI Taixin, ZHOU Huachun, LUO Hongbin, et al. SERvICE: A software defined framework for integrated space-terrestrial satellite communication[J]. IEEE Transactions on Mobile Computing, 2018, 17(3): 703–716. doi: 10.1109/TMC.2017.2732343.
    [16] ZHANG Ning, ZHANG Shan, YANG Peng, et al. Software defined space-air-ground integrated vehicular networks: Challenges and solutions[J]. IEEE Communications Magazine, 2017, 55(7): 101–109. doi: 10.1109/MCOM.2017.1601156.
    [17] SHI Yongpeng, CAO Yurui, LIU Jiajia, et al. A cross-domain SDN architecture for multi-layered space-terrestrial integrated networks[J]. IEEE Network, 2019, 33(1): 29–35. doi: 10.1109/MNET.2018.1800191.
    [18] CHEN Chen, LIAO Zhan, JU Ying, et al. Hierarchical domain-based multicontroller deployment strategy in SDN-enabled space-air-ground integrated network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 4864–4879. doi: 10.1109/TAES.2022.3199191.
    [19] ESMAT H H, LORENZO B, and SHI Weisong. Toward resilient network slicing for satellite-terrestrial edge computing IoT[J]. IEEE Internet of Things Journal, 2023, 10(16): 14621–14645. doi: 10.1109/JIOT.2023.3277466.
    [20] CHENG Nan, LYU Feng, QUAN Wei, et al. Space/aerial-assisted computing offloading for IoT applications: A learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117–1129. doi: 10.1109/JSAC.2019.2906789.
    [21] ZHANG Zhenjiang, ZHANG Wenyu, and TSENG F H. Satellite mobile edge computing: Improving QoS of high-speed satellite-terrestrial networks using edge computing techniques[J]. IEEE Network, 2019, 33(1): 70–76. doi: 10.1109/MNET.2018.1800172.
    [22] QIU Chao, YAO Haipeng, YU R F, et al. Deep Q-learning aided networking, caching, and computing resources allocation in software-defined satellite-terrestrial networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5871–5883. doi: 10.1109/TVT.2019.2907682.
    [23] XIE Renchao, TANG Qinqin, WANG Qiuning, et al. Satellite-terrestrial integrated edge computing networks: Architecture, challenges, and open issues[J]. IEEE Network, 2020, 34(3): 224–231. doi: 10.1109/MNET.011.1900369.
    [24] ZHANG Yalin, GAO Xiaozheng, YUAN Hang, et al. Joint UAV trajectory and power allocation with hybrid FSO/RF for secure space-air-ground communications[J]. IEEE Internet of Things Journal, 2024, 11(19): 31407–31421. doi: 10.1109/JIOT.2024.3419264.
    [25] ZHAI Daosen, ZHANG Ruonan, DU Jianbo, et al. Simultaneous wireless information and power transfer at 5G new frequencies: Channel measurement and network design[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(1): 171–186. doi: 10.1109/JSAC.2018.2872366.
    [26] SONG Yanjie, OU Junwei, WU Jian, et al. A cluster-based genetic optimization method for satellite range scheduling system[J]. Swarm and Evolutionary Computation, 2023, 79: 101316. doi: 10.1016/j.swevo.2023.101316.
  • 加載中
圖(9) / 表(1)
計(jì)量
  • 文章訪問數(shù):  259
  • HTML全文瀏覽量:  151
  • PDF下載量:  34
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-06-19
  • 修回日期:  2024-11-17
  • 網(wǎng)絡(luò)出版日期:  2024-11-29
  • 刊出日期:  2024-12-01

目錄

    /

    返回文章
    返回