面向任務(wù)驅(qū)動(dòng)的動(dòng)態(tài)可伸縮空間信息網(wǎng)絡(luò)架構(gòu)設(shè)計(jì)與優(yōu)化
doi: 10.11999/JEIT240505 cstr: 32379.14.JEIT240505
-
1.
中國礦業(yè)大學(xué)信息與控制工程學(xué)院 徐州 221116
-
2.
南京航天航空大學(xué)電子信息工程學(xué)院 南京 210024
-
3.
西北工業(yè)大學(xué)軟件學(xué)院 西安 710072
-
4.
西安郵電大學(xué)通信與信息工程學(xué)院 西安 710121
Design and Optimization of Task-driven Dynamic Scalable Network Architecture in Spatial Information Networks
-
1.
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
-
2.
School of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210024, China
-
3.
School of Software, Northwestern Polytechnical University, Xi’an 710072, China
-
4.
School of Electronic and Communication Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
-
摘要: 現(xiàn)階段空間信息網(wǎng)絡(luò)中各衛(wèi)星子系統(tǒng)各成體系且相互割裂,使得網(wǎng)絡(luò)呈現(xiàn)封閉、分裂態(tài)勢,形成嚴(yán)峻資源壁壘,造成空間資源協(xié)同應(yīng)用能力弱以及網(wǎng)絡(luò)擴(kuò)展能力低等難題。傳統(tǒng)架構(gòu)設(shè)計(jì)采用對(duì)現(xiàn)階段空間網(wǎng)絡(luò)架構(gòu)的“完全顛覆”的思路,大大增加了實(shí)際部署的難度。為此,該文立足于衛(wèi)星網(wǎng)絡(luò)現(xiàn)狀,采取“按步驟分階段升級(jí)”的思路,促進(jìn)現(xiàn)有網(wǎng)絡(luò)架構(gòu)的演進(jìn),從任務(wù)驅(qū)動(dòng)角度開展動(dòng)態(tài)可伸縮空間信息網(wǎng)絡(luò)架構(gòu)模型研究,實(shí)現(xiàn)空間資源在各衛(wèi)星子系統(tǒng)間高效動(dòng)態(tài)共享,促進(jìn)空間資源根據(jù)任務(wù)需求變化而動(dòng)態(tài)高效匯聚。首先,提出分階段實(shí)現(xiàn)的網(wǎng)絡(luò)架構(gòu)模型,旨在兼容和升級(jí)現(xiàn)有網(wǎng)絡(luò)架構(gòu)。隨后,介紹核心部件網(wǎng)絡(luò)資源協(xié)調(diào)器的詳細(xì)設(shè)計(jì),包括網(wǎng)絡(luò)結(jié)構(gòu)與工作協(xié)議、超幀結(jié)構(gòu)以及高效的網(wǎng)絡(luò)資源動(dòng)態(tài)分配策略,實(shí)現(xiàn)空間數(shù)據(jù)的高效傳輸。仿真結(jié)果表明,所提網(wǎng)絡(luò)架構(gòu)實(shí)現(xiàn)了網(wǎng)絡(luò)資源高效共享,大大提升空間信息網(wǎng)絡(luò)的網(wǎng)絡(luò)性能。
-
關(guān)鍵詞:
- 空間信息網(wǎng)絡(luò) /
- 網(wǎng)絡(luò)架構(gòu) /
- 資源分配 /
- 數(shù)據(jù)傳輸
Abstract: At the present stage, the satellite subsystems in Space Information Networks (SINs) have their own systems and are separated from each other, which makes the network appear closed and fragmented, forming a severe resource barrier and resulting in weak collaborative application ability of space resources and low network expansion ability. The traditional architecture design adopts the “completely subversive” idea of the current space networks, which greatly increases the difficulty of actual deployment. Therefore, based on the current status of satellite networks, the idea of “upgrading step by step” is adopted to promote the evolution of the existing network architecture, and a dynamic and scalable architecture model is proposed in SINs from the perspective of mission drive, so as to realize the efficient and dynamic sharing of space resources among subsystems and promote the dynamic and efficient aggregation of space resources according to the changes in mission requirements. Firstly, a phased network architecture model is proposed, aiming at compatibility and upgrading of the existing network architecture. Then, the design of the core component coordinator is introduced, including network structure and working protocol, superframe structure, and efficient network resource allocation strategy, to realize the efficient transmission of spatial data. The simulation results show that the proposed network architecture realizes the efficient sharing of network resources and greatly improves the utilization rate of network resources. -
1 基于任務(wù)驅(qū)動(dòng)的動(dòng)態(tài)可伸縮空間信息網(wǎng)絡(luò)架構(gòu)
(1)信息輸入:初始化隊(duì)列$ {\boldsymbol{Q}}(t) = \{ {Q_n}(t)\} $ (2)資源感知:資源協(xié)調(diào)器在超幀$ t $內(nèi)的時(shí)隙0:(1)收集物理網(wǎng)絡(luò)信息計(jì)算衛(wèi)星與數(shù)傳站之間的時(shí)間窗口信息;(2)收集卸載任務(wù)請(qǐng)求,結(jié)合
時(shí)間窗口信息,構(gòu)建卸載任務(wù)信息;(3)算法執(zhí)行:在超幀$ t $的時(shí)隙1內(nèi): (a)構(gòu)建優(yōu)化問題$ {\text{P6}} $,調(diào)用Kuhn-Munkres 算法求解最優(yōu)變量值$ {{\boldsymbol{x}}^{\rm{opt}}} $; (b)基于最優(yōu)變量值$ {{\boldsymbol{x}}^{\rm{opt}}} $,構(gòu)建優(yōu)化問題$ {\text{P8}} $,并執(zhí)行如下流程求解最優(yōu)變量值$ ({{\boldsymbol{y}}}^{\text{opt}},{{\boldsymbol{f}}}^{\text{opt}}) $,其中$ {{\boldsymbol{y}}}^{\text{opt}}=\left\{({{\boldsymbol{y}}}_{s,n}^{t}{)}^{\text{opt}}\right\} $和$ {{\boldsymbol{f}}}^{\text{opt}}=\left\{({f}_{s}^{t}{)}^{\text{opt}}\right\} $; For $ s = 1:S $ 根據(jù)式(14)求出 $ ({y}_{s,n}^{t}{)}^{\text{opt}} $; $ ({f}_{s}^{t}{)}^{\text{opt}}={{\displaystyle \sum _{h\in \mathcal{H}}({x}_{s,h}^{t})}}^{\text{opt}}{C}_{s,h}^{t} $ End (4)策略分發(fā):資源協(xié)調(diào)器將$ {{\boldsymbol{x}}^{\rm{opt}}} $和$ ({{\boldsymbol{y}}}^{\text{opt}},{{\boldsymbol{f}}}^{\text{opt}}) $轉(zhuǎn)化為指令,推送到實(shí)際衛(wèi)星子系統(tǒng),進(jìn)而構(gòu)建虛擬數(shù)傳站; (5)數(shù)據(jù)卸載:虛擬衛(wèi)星子系統(tǒng)根據(jù)其網(wǎng)絡(luò)資源和任務(wù)信息執(zhí)行數(shù)據(jù)卸載; (6)超幀索引更新:檢測超幀$ t $的時(shí)長是否執(zhí)行結(jié)束,若結(jié)束則更新超幀索引:$ t = t + 1 $,根據(jù)式(5)更新隊(duì)列$ {\boldsymbol{Q}}(t) $,并返回步驟(2). 下載: 導(dǎo)出CSV
-
[1] HU Fei, YANG Chaowei, SCHNASE J L, et al. Climatespark: An in-memory distributed computing framework for big climate data analytics[J]. Computers & Geosciences, 2018, 115: 154–166. doi: 10.1016/j.cageo.2018.03.011. [2] LI Deren.On the space and sky information real-time intelligent service system with deep integration of military and civilian[J]. Civil-Military Integration on Cyberspace, 2018(12):12-15.LI Deren.On the space and sky information real-time intelligent service system with deep integration of military and civilian[J]. Civil-Military Integration on Cyberspace, 2018(12):12-15. [3] 張威, 張更新, 茍亮. 空間信息網(wǎng)絡(luò)中的星座設(shè)計(jì)方法研究[J]. 中興通訊技術(shù), 2016, 22(4): 19–23,45. doi: 10.3969/j.issn.1009-6868.2016.04.004.ZHANG Wei, ZHANG Gengxin, and GOU Liang. Satellite constellation design in space information network[J]. ZTE Technology Journal, 2016, 22(4): 19–23,45. doi: 10.3969/j.issn.1009-6868.2016.04.004. [4] ZHANG Wei, ZHANG Gengxin, XIE Zhidong, et al. A hierarchical autonomous system based space information network architecture and topology control[J]. Journal of Communications and Information Networks, 2016, 1(3): 77–89. doi: 10.11959/j.issn.2096-1081.2016.017. [5] SUN Jiayu, QI Weijing, SONG Qingyang, et al. A new architecture for space information networks based on an MEO constellation optical backbone network[C]. Asia Communications and Photonics Conference 2017, Guangzhou, China, 2017: Su3C. 3. doi: 10.1364/ACPC.2017.Su3C.3. [6] MA Ting, QIAN Bo, QIN Xiaohan, et al. Satellite-terrestrial integrated 6G: An ultra-dense LEO networking management architecture[J]. IEEE Wireless Communications, 2024, 31(1): 62–69. doi: 10.1109/MWC.011.2200198. [7] ZHENG Gao, WANG Ning, and TAFAZOLLI R R. SDN in space: A virtual data-plane addressing scheme for supporting LEO satellite and terrestrial networks integration[J]. IEEE/ACM Transactions on Networking, 2024, 32(2): 1781–1796. doi: 10.1109/TNET.2023.3330672. [8] YANG Huiting, LIU Wei, WANG Xiangfeng, et al. Group sparse space information network with joint virtual network function deployment and maximum flow routing strategy[J]. IEEE Transactions on Wireless Communications, 2023, 22(8): 5291–5305. doi: 10.1109/TWC.2022.3233067. [9] XIA Qiufen, WANG Guijie, XU Zichuan, et al. Efficient algorithms for service chaining in NFV-enabled satellite edge networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(5): 5677–5694. doi: 10.1109/TMC.2023.3312352. [10] BAO Jinzhen, ZHAO Baokang, YU Wangrong, et al. OpenSAN: A software-defined satellite network architecture[C]. Proceedings of the 2014 ACM Conference on SIGCOMM, Chicago, USA, 2014: 347–348. doi: 10.1145/2619239.2631454. [11] YANG Bowei, WU Yue, CHU Xiaoli, et al. Seamless handover in software-defined satellite networking[J]. IEEE Communications Letters, 2016, 20(9): 1768–1771. doi: 10.1109/LCOMM.2016.2585482. [12] FENG Jing, JIANG Lei, SHEN Ye, et al. A scheme for software defined ORS satellite networking[C]. 2014 IEEE Fourth International Conference on Big Data and Cloud Computing, Sydney, Australia, 2014: 716–721. doi: 10.1109/BDCloud.2014.19. [13] FENG Bohao, ZHOU Huachun, ZHANG Hongke, et al. HetNet: A flexible architecture for heterogeneous satellite-terrestrial networks[J]. IEEE Network, 2017, 31(6): 86–92. doi: 10.1109/MNET.2017.1600330. [14] SHENG Min, WANG Yu, LI Jiandong, et al. Toward a flexible and reconfigurable broadband satellite network: Resource management architecture and strategies[J]. IEEE Wireless Communications, 2017, 24(4): 127–133. doi: 10.1109/MWC.2017.1600173. [15] LI Taixin, ZHOU Huachun, LUO Hongbin, et al. SERvICE: A software defined framework for integrated space-terrestrial satellite communication[J]. IEEE Transactions on Mobile Computing, 2018, 17(3): 703–716. doi: 10.1109/TMC.2017.2732343. [16] ZHANG Ning, ZHANG Shan, YANG Peng, et al. Software defined space-air-ground integrated vehicular networks: Challenges and solutions[J]. IEEE Communications Magazine, 2017, 55(7): 101–109. doi: 10.1109/MCOM.2017.1601156. [17] SHI Yongpeng, CAO Yurui, LIU Jiajia, et al. A cross-domain SDN architecture for multi-layered space-terrestrial integrated networks[J]. IEEE Network, 2019, 33(1): 29–35. doi: 10.1109/MNET.2018.1800191. [18] CHEN Chen, LIAO Zhan, JU Ying, et al. Hierarchical domain-based multicontroller deployment strategy in SDN-enabled space-air-ground integrated network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 4864–4879. doi: 10.1109/TAES.2022.3199191. [19] ESMAT H H, LORENZO B, and SHI Weisong. Toward resilient network slicing for satellite-terrestrial edge computing IoT[J]. IEEE Internet of Things Journal, 2023, 10(16): 14621–14645. doi: 10.1109/JIOT.2023.3277466. [20] CHENG Nan, LYU Feng, QUAN Wei, et al. Space/aerial-assisted computing offloading for IoT applications: A learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117–1129. doi: 10.1109/JSAC.2019.2906789. [21] ZHANG Zhenjiang, ZHANG Wenyu, and TSENG F H. Satellite mobile edge computing: Improving QoS of high-speed satellite-terrestrial networks using edge computing techniques[J]. IEEE Network, 2019, 33(1): 70–76. doi: 10.1109/MNET.2018.1800172. [22] QIU Chao, YAO Haipeng, YU R F, et al. Deep Q-learning aided networking, caching, and computing resources allocation in software-defined satellite-terrestrial networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5871–5883. doi: 10.1109/TVT.2019.2907682. [23] XIE Renchao, TANG Qinqin, WANG Qiuning, et al. Satellite-terrestrial integrated edge computing networks: Architecture, challenges, and open issues[J]. IEEE Network, 2020, 34(3): 224–231. doi: 10.1109/MNET.011.1900369. [24] ZHANG Yalin, GAO Xiaozheng, YUAN Hang, et al. Joint UAV trajectory and power allocation with hybrid FSO/RF for secure space-air-ground communications[J]. IEEE Internet of Things Journal, 2024, 11(19): 31407–31421. doi: 10.1109/JIOT.2024.3419264. [25] ZHAI Daosen, ZHANG Ruonan, DU Jianbo, et al. Simultaneous wireless information and power transfer at 5G new frequencies: Channel measurement and network design[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(1): 171–186. doi: 10.1109/JSAC.2018.2872366. [26] SONG Yanjie, OU Junwei, WU Jian, et al. A cluster-based genetic optimization method for satellite range scheduling system[J]. Swarm and Evolutionary Computation, 2023, 79: 101316. doi: 10.1016/j.swevo.2023.101316. -