一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

弧形邊界在伴隨變量法下的電磁靈敏度分析

張玉賢 朱海鴿 馮曉麗 楊利霞 黃志祥

張玉賢, 朱海鴿, 馮曉麗, 楊利霞, 黃志祥. 弧形邊界在伴隨變量法下的電磁靈敏度分析[J]. 電子與信息學報, 2024, 46(12): 4513-4521. doi: 10.11999/JEIT240432
引用本文: 張玉賢, 朱海鴿, 馮曉麗, 楊利霞, 黃志祥. 弧形邊界在伴隨變量法下的電磁靈敏度分析[J]. 電子與信息學報, 2024, 46(12): 4513-4521. doi: 10.11999/JEIT240432
ZHANG Yuxian, ZHU Haige, FENG Xiaoli, YANG Lixia, HUANG Zhixiang. Electromagnetic Sensitivity Analysis of Curved Boundaries under the Method of Accompanying Variables[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4513-4521. doi: 10.11999/JEIT240432
Citation: ZHANG Yuxian, ZHU Haige, FENG Xiaoli, YANG Lixia, HUANG Zhixiang. Electromagnetic Sensitivity Analysis of Curved Boundaries under the Method of Accompanying Variables[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4513-4521. doi: 10.11999/JEIT240432

弧形邊界在伴隨變量法下的電磁靈敏度分析

doi: 10.11999/JEIT240432 cstr: 32379.14.JEIT240432
基金項目: 國家自然科學基金(62101333, 62071003, U21A20457),安徽省高校優(yōu)秀科研創(chuàng)新團隊項目(2022AH010002)
詳細信息
    作者簡介:

    張玉賢:男,副教授,研究方向為計算電磁學、電磁逆時偏移成像技術(shù)

    朱海鴿:男,碩士生,研究方向為計算電磁學、靈敏度分析

    馮曉麗:女,助理工程師,研究方向為集成電路工藝設(shè)計

    楊利霞:男,教授,研究方向為等離子體物理、時域有限差分方法

    黃志祥:男,教授,研究方向為計算電磁學、多物理場

    通訊作者:

    楊利霞 lixiayang@yeah.net

  • 中圖分類號: TN011; O441.4

Electromagnetic Sensitivity Analysis of Curved Boundaries under the Method of Accompanying Variables

Funds: The National Natural Science Foundation of China (62101333, 62071003, U21A20457), The Project of Excellent Scientific Research and Innovation Team of Universities in Anhui Province (2022AH010002)
  • 摘要: 電磁靈敏度分析是評估設(shè)計參數(shù)變化對電磁性能影響的一種方法,它通過計算靈敏度信息指導(dǎo)結(jié)構(gòu)模型分析,以滿足設(shè)計規(guī)范。商業(yè)軟件在進行電磁結(jié)構(gòu)優(yōu)化設(shè)計時,常通過調(diào)整幾何結(jié)構(gòu)并使用傳統(tǒng)算法,但這種方法計算耗時且資源占用大。為了提高模型設(shè)計的效率,該文提出一種穩(wěn)定高效的處理方案,即伴隨變量法(AVM),利用僅有2次算法模擬條件下,實現(xiàn)在參數(shù)變換上進行1~2階靈敏度估計。當前AVM的絕大多數(shù)應(yīng)用局限在矩形邊界參數(shù)的靈敏度分析,該文首次開拓性地將AVM拓展到弧形邊界參數(shù)的靈敏度分析?;诠潭ǖ谋緲?gòu)參數(shù)、頻率依賴性目標函數(shù)以及瞬態(tài)脈沖函數(shù)的3種不同情形設(shè)計的條件,實現(xiàn)了對弧形結(jié)構(gòu)的電磁靈敏度的高效分析。與有限差分方法(FDM)相比,該方法在計算效率上得到了顯著的提高。該方法有效實施顯著拓寬了AVM在弧形邊界上的應(yīng)用范圍,可應(yīng)用于等離子體模型的電磁結(jié)構(gòu)、復(fù)雜天線模型的邊緣結(jié)構(gòu)等優(yōu)化問題上。當計算資源較少的情況下,可滿足電磁結(jié)構(gòu)優(yōu)化的可靠性和穩(wěn)定性。
  • 圖  1  有損介質(zhì)不連續(xù)面的不同節(jié)點分類

    圖  2  2維TMz的平面波入射結(jié)構(gòu)

    圖  3  2維示例對介質(zhì)相對介電常數(shù)、電導(dǎo)率和半徑掃描的靈敏度

    圖  4  頻譜實部與虛部對所有參數(shù)的靈敏度

    圖  5  探測點場值在整個時間步中有限差分法與伴隨變量法靈敏度對比

    表  1  本構(gòu)無關(guān)目標函數(shù)下AVM和FDM之間的范數(shù)誤差

    誤差類型 $ {\varepsilon _{\mathrm{r}}} $ $ {\sigma ^{\mathrm{e}}} $ $ r $
    AVM和CFD 2.0255×10–3 5.1667×10–4 6.2553×10–2
    AVM和FFD 2.7232×10–3 5.5774×10–4 7.3643×10–3
    AVM和BFD 1.3269×10–3 4.7567×10–4 1.4296×10–1
    下載: 導(dǎo)出CSV

    表  2  頻率相關(guān)目標函數(shù)下AVM和FDM之間的范數(shù)誤差

    誤差類型 $ {\varepsilon _{\mathrm{r}}} $ $ {\sigma ^{\mathrm{e}}} $ r
    實部 虛部 實部 虛部 實部 虛部
    AVM和CFD 0.0099 0.0459 0.0551 0.0101 0.1178 0.1132
    AVM和FFD 0.0137 0.0594 0.0573 0.0101 0.1145 0.2525
    AVM和BFD 0.0013 0.0820 0.0533 0.0104 0.1287 0.1842
    下載: 導(dǎo)出CSV

    表  3  瞬態(tài)函數(shù)下AVM和FDM之間的范數(shù)誤差

    誤差類型 $ {\varepsilon _{\mathrm{r}}} $ (×10–2) $ {\sigma ^{\mathrm{e}}} $ (×10–3) r (×10–1)
    AVM和CFD 0.3689 4.0714 1.1738
    AVM和FFD 1.3879 4.9260 1.3187
    AVM和BFD 1.9305 4.1873 1.3244
    下載: 導(dǎo)出CSV
  • [1] RAO S S. Engineering Optimization Theory and Practice[M]. 4th ed. Hoboken: John Wiley & Sons, 2009.
    [2] ANTONIOU A and LU Wusheng. Practical Optimization Algorithms and Engineering Applications[M]. New York: Springer, 2007.
    [3] WU J C, WANG S P, WANG Y H, et al. Sensitivity analysis of design parameters in transverse flux induction heating device[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4): 0600406. doi: 10.1109/TASC.2020.2973604.
    [4] DU Guanghui, HUANG Na, ZHAO Yanyun, et al. Comprehensive sensitivity analysis and multiphysics optimization of the rotor for a high speed permanent magnet machine[J]. IEEE Transactions on Energy Conversion, 2021, 36(1): 358–367. doi: 10.1109/TEC.2020.3005568.
    [5] BAKER R D. A methodology for sensitivity analysis of models fitted to data using statistical methods[J]. IMA Journal of Management Mathematics, 2001, 12(1): 23–39. doi: 10.1093/imaman/12.1.23.
    [6] CABANA K, CANDELO J E, and CASTILLO R. Statistical analysis of voltage sensitivity in distribution systems integrating DG[J]. IEEE Latin America Transactions, 2016, 14(10): 4304–4309. doi: 10.1109/TLA.2016.7786309.
    [7] LI Hui, DU Yuanbo, YANG Xian, et al. Optimization of operation parameters in a cesium atomic fountain clock using Monte Carlo method[J]. IEEE Access, 2021, 9: 132140–132149. doi: 10.1109/ACCESS.2021.3113161.
    [8] KIM H, LEE J, LEE J, et al. Topology optimization of a magnetic resonator using finite-difference time-domain method for wireless energy transfer[J]. IEEE Transactions on Magnetics, 2016, 52(3): 7003304. doi: 10.1109/TMAG.2015.2478444.
    [9] ZHONG Shuangying, RAN Chongxi, and LIU Song. The optimal force-gradient symplectic finite-difference time-domain scheme for electromagnetic wave propagation[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(12): 5450–5454. doi: 10.1109/TAP.2016.2606543.
    [10] MORI T, MURAKAMI R, SATO Y, et al. Shape optimization of wideband antennas for microwave energy harvesters using FDTD[J]. IEEE Transactions on Magnetics, 2015, 51(3): 8000804. doi: 10.1109/TMAG.2014.2359677.
    [11] FENG Feng, XUE Jianguo, ZHANG Jianan, et al. Concise and compatible MOR-based self-adjoint EM sensitivity analysis for fast frequency sweep[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(9): 3829–3840. doi: 10.1109/TMTT.2023.3248167.
    [12] NA Weicong, LIU Ke, ZHANG Wanrong, et al. Advanced EM optimization using adjoint-sensitivity-based multifeature surrogate for microwave filter design[J]. IEEE Microwave and Wireless Technology Letters, 2024, 34(1): 1–4. doi: 10.1109/LMWT.2023.3329783.
    [13] NIKOLOVA N K, BANDLER J W, and BAKR M H. Adjoint techniques for sensitivity analysis in high-frequency structure CAD[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(1): 403–419. doi: 10.1109/TMTT.2003.820905.
    [14] ZHANG Yu, AHMED O S, and BAKR M H. Adjoint sensitivity analysis of plasmonic structures using the FDTD method[J]. Optics Letters, 2014, 39(10): 3002–3005. doi: 10.1364/OL.39.003002.
    [15] HARMON J J, KEY C, ESTEP D, et al. Adjoint-based accelerated adaptive refinement in frequency domain 3-D finite element method scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 940–949. doi: 10.1109/TAP.2020.3016162.
    [16] HUANG Zhengyu, JIANG Feng, CHEN Zian, et al. A 3-D total-field/scattered-field plane-wave source for the unconditionally stable associated hermite FDTD method[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(2): 628–632. doi: 10.1109/LAWP.2023.3331381.
    [17] 葉志紅, 張玉, 魯唱唱. 端接復(fù)雜電路傳輸線網(wǎng)絡(luò)的電磁耦合時域并行計算方法[J]. 電子與信息學報, 2024, 46(2): 713–719. doi: 10.11999/JEIT230098.

    YE Zhihong, ZHANG Yu, and LU Changchang. Time domain parallel calculation method for the coupling of transmission line network terminated with complex circuits[J]. Journal of Electronics & Information Technology, 2024, 46(2): 713–719. doi: 10.11999/JEIT230098.
    [18] ZHU Guocui, NIU Kaikun, LI Minquan, et al. High-order ME-CFS-PML implementations for terminating the FDTD domain composed of arbitrary media[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(4): 2414–2426. doi: 10.1109/TMTT.2023.33158373.
    [19] ZHAO Sihan, WEI Bing, HE Xinbo, et al. 2-D hybrid cylindrical FDTD method with unconditional stability[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(7): 955–958. doi: 10.1109/LMWT.2023.3261918.
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數(shù):  332
  • HTML全文瀏覽量:  167
  • PDF下載量:  21
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-05-30
  • 修回日期:  2024-09-20
  • 網(wǎng)絡(luò)出版日期:  2024-09-28
  • 刊出日期:  2024-12-01

目錄

    /

    返回文章
    返回