弧形邊界在伴隨變量法下的電磁靈敏度分析
doi: 10.11999/JEIT240432 cstr: 32379.14.JEIT240432
-
1.
安徽大學電子信息工程學院 合肥 230601
-
2.
安徽大學信息材料與智能感知安徽省實驗室 合肥 230601
-
3.
安徽大學集成電路先進材料與技術(shù)產(chǎn)教研融合研究院 合肥 230601
Electromagnetic Sensitivity Analysis of Curved Boundaries under the Method of Accompanying Variables
-
1.
School of Electronic and Information Engineering, Anhui University, Hefei 230601, China
-
2.
Anhui Provincial Laboratory of Information Materials and Intelligent Perception at Anhui University, Hefei 230601, China
-
3.
Anhui University Integrated Circuit Advanced Materials and Technology Industry Education Research Integration Research Institute, Hefei 230601, China
-
摘要: 電磁靈敏度分析是評估設(shè)計參數(shù)變化對電磁性能影響的一種方法,它通過計算靈敏度信息指導(dǎo)結(jié)構(gòu)模型分析,以滿足設(shè)計規(guī)范。商業(yè)軟件在進行電磁結(jié)構(gòu)優(yōu)化設(shè)計時,常通過調(diào)整幾何結(jié)構(gòu)并使用傳統(tǒng)算法,但這種方法計算耗時且資源占用大。為了提高模型設(shè)計的效率,該文提出一種穩(wěn)定高效的處理方案,即伴隨變量法(AVM),利用僅有2次算法模擬條件下,實現(xiàn)在參數(shù)變換上進行1~2階靈敏度估計。當前AVM的絕大多數(shù)應(yīng)用局限在矩形邊界參數(shù)的靈敏度分析,該文首次開拓性地將AVM拓展到弧形邊界參數(shù)的靈敏度分析?;诠潭ǖ谋緲?gòu)參數(shù)、頻率依賴性目標函數(shù)以及瞬態(tài)脈沖函數(shù)的3種不同情形設(shè)計的條件,實現(xiàn)了對弧形結(jié)構(gòu)的電磁靈敏度的高效分析。與有限差分方法(FDM)相比,該方法在計算效率上得到了顯著的提高。該方法有效實施顯著拓寬了AVM在弧形邊界上的應(yīng)用范圍,可應(yīng)用于等離子體模型的電磁結(jié)構(gòu)、復(fù)雜天線模型的邊緣結(jié)構(gòu)等優(yōu)化問題上。當計算資源較少的情況下,可滿足電磁結(jié)構(gòu)優(yōu)化的可靠性和穩(wěn)定性。Abstract: Sensitivity analysis an evaluation method for the influence with variations of the design parameters on electromagnetic performance, which is utilized to calculate sensitivity information. This information guides the analysis of structural models to ensure compliance with design specifications. In the optimization design of electromagnetic structures by commercial software, traditional algorithms are often employed, involving adjustments to the geometry. However, this approach is known to be extensive in terms of computational time and resource consumption. In order to enhance the efficiency of model design, a stable and efficient processing scheme is proposed in the paper, known as the Adjoint Variable Method (AVM). This method achieves estimation of 1st~2nd order sensitivity on parameter transformations with only two algorithmic simulation conditions required. The application of AVM has predominantly been confined to the sensitivity analysis of rectangular boundary parameters, with this paper making the first extension of AVM to the sensitivity analysis of arc boundary parameters. Efficient analysis of the electromagnetic sensitivity of curved structures is accomplished based on the conditions designed for three distinct scenarios: fixed intrinsic parameters, frequency-dependent objective functions, and transient impulse functions. Compared to the Finite-Difference Method (FDM), a significant enhancement in computational efficiency is achieved by the proposed method. The effective implementation of the method substantially expands the application scope of AVM to curved boundaries, which can be utilized in optimization problems such as the electromagnetic structures of plasma models and the edge structures of complex antenna models. When computational resources are limited, the reliability and stability of electromagnetic structure optimization can be ensured by the application of the proposed method.
-
表 1 本構(gòu)無關(guān)目標函數(shù)下AVM和FDM之間的范數(shù)誤差
誤差類型 $ {\varepsilon _{\mathrm{r}}} $ $ {\sigma ^{\mathrm{e}}} $ $ r $ AVM和CFD 2.0255 ×10–35.1667 ×10–46.2553 ×10–2AVM和FFD 2.7232 ×10–35.5774 ×10–47.3643 ×10–3AVM和BFD 1.3269 ×10–34.7567 ×10–41.4296 ×10–1下載: 導(dǎo)出CSV
表 2 頻率相關(guān)目標函數(shù)下AVM和FDM之間的范數(shù)誤差
誤差類型 $ {\varepsilon _{\mathrm{r}}} $ $ {\sigma ^{\mathrm{e}}} $ r 實部 虛部 實部 虛部 實部 虛部 AVM和CFD 0.0099 0.0459 0.0551 0.0101 0.1178 0.1132 AVM和FFD 0.0137 0.0594 0.0573 0.0101 0.1145 0.2525 AVM和BFD 0.0013 0.0820 0.0533 0.0104 0.1287 0.1842 下載: 導(dǎo)出CSV
表 3 瞬態(tài)函數(shù)下AVM和FDM之間的范數(shù)誤差
誤差類型 $ {\varepsilon _{\mathrm{r}}} $ (×10–2) $ {\sigma ^{\mathrm{e}}} $ (×10–3) r (×10–1) AVM和CFD 0.3689 4.0714 1.1738 AVM和FFD 1.3879 4.9260 1.3187 AVM和BFD 1.9305 4.1873 1.3244 下載: 導(dǎo)出CSV
-
[1] RAO S S. Engineering Optimization Theory and Practice[M]. 4th ed. Hoboken: John Wiley & Sons, 2009. [2] ANTONIOU A and LU Wusheng. Practical Optimization Algorithms and Engineering Applications[M]. New York: Springer, 2007. [3] WU J C, WANG S P, WANG Y H, et al. Sensitivity analysis of design parameters in transverse flux induction heating device[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4): 0600406. doi: 10.1109/TASC.2020.2973604. [4] DU Guanghui, HUANG Na, ZHAO Yanyun, et al. Comprehensive sensitivity analysis and multiphysics optimization of the rotor for a high speed permanent magnet machine[J]. IEEE Transactions on Energy Conversion, 2021, 36(1): 358–367. doi: 10.1109/TEC.2020.3005568. [5] BAKER R D. A methodology for sensitivity analysis of models fitted to data using statistical methods[J]. IMA Journal of Management Mathematics, 2001, 12(1): 23–39. doi: 10.1093/imaman/12.1.23. [6] CABANA K, CANDELO J E, and CASTILLO R. Statistical analysis of voltage sensitivity in distribution systems integrating DG[J]. IEEE Latin America Transactions, 2016, 14(10): 4304–4309. doi: 10.1109/TLA.2016.7786309. [7] LI Hui, DU Yuanbo, YANG Xian, et al. Optimization of operation parameters in a cesium atomic fountain clock using Monte Carlo method[J]. IEEE Access, 2021, 9: 132140–132149. doi: 10.1109/ACCESS.2021.3113161. [8] KIM H, LEE J, LEE J, et al. Topology optimization of a magnetic resonator using finite-difference time-domain method for wireless energy transfer[J]. IEEE Transactions on Magnetics, 2016, 52(3): 7003304. doi: 10.1109/TMAG.2015.2478444. [9] ZHONG Shuangying, RAN Chongxi, and LIU Song. The optimal force-gradient symplectic finite-difference time-domain scheme for electromagnetic wave propagation[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(12): 5450–5454. doi: 10.1109/TAP.2016.2606543. [10] MORI T, MURAKAMI R, SATO Y, et al. Shape optimization of wideband antennas for microwave energy harvesters using FDTD[J]. IEEE Transactions on Magnetics, 2015, 51(3): 8000804. doi: 10.1109/TMAG.2014.2359677. [11] FENG Feng, XUE Jianguo, ZHANG Jianan, et al. Concise and compatible MOR-based self-adjoint EM sensitivity analysis for fast frequency sweep[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(9): 3829–3840. doi: 10.1109/TMTT.2023.3248167. [12] NA Weicong, LIU Ke, ZHANG Wanrong, et al. Advanced EM optimization using adjoint-sensitivity-based multifeature surrogate for microwave filter design[J]. IEEE Microwave and Wireless Technology Letters, 2024, 34(1): 1–4. doi: 10.1109/LMWT.2023.3329783. [13] NIKOLOVA N K, BANDLER J W, and BAKR M H. Adjoint techniques for sensitivity analysis in high-frequency structure CAD[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(1): 403–419. doi: 10.1109/TMTT.2003.820905. [14] ZHANG Yu, AHMED O S, and BAKR M H. Adjoint sensitivity analysis of plasmonic structures using the FDTD method[J]. Optics Letters, 2014, 39(10): 3002–3005. doi: 10.1364/OL.39.003002. [15] HARMON J J, KEY C, ESTEP D, et al. Adjoint-based accelerated adaptive refinement in frequency domain 3-D finite element method scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 940–949. doi: 10.1109/TAP.2020.3016162. [16] HUANG Zhengyu, JIANG Feng, CHEN Zian, et al. A 3-D total-field/scattered-field plane-wave source for the unconditionally stable associated hermite FDTD method[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(2): 628–632. doi: 10.1109/LAWP.2023.3331381. [17] 葉志紅, 張玉, 魯唱唱. 端接復(fù)雜電路傳輸線網(wǎng)絡(luò)的電磁耦合時域并行計算方法[J]. 電子與信息學報, 2024, 46(2): 713–719. doi: 10.11999/JEIT230098.YE Zhihong, ZHANG Yu, and LU Changchang. Time domain parallel calculation method for the coupling of transmission line network terminated with complex circuits[J]. Journal of Electronics & Information Technology, 2024, 46(2): 713–719. doi: 10.11999/JEIT230098. [18] ZHU Guocui, NIU Kaikun, LI Minquan, et al. High-order ME-CFS-PML implementations for terminating the FDTD domain composed of arbitrary media[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(4): 2414–2426. doi: 10.1109/TMTT.2023.33158373. [19] ZHAO Sihan, WEI Bing, HE Xinbo, et al. 2-D hybrid cylindrical FDTD method with unconditional stability[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(7): 955–958. doi: 10.1109/LMWT.2023.3261918. -