一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

邊緣計(jì)算中面向緩存的遷移決策和資源分配

楊守義 韓昊錦 郝萬(wàn)明 陳怡航

楊守義, 韓昊錦, 郝萬(wàn)明, 陳怡航. 邊緣計(jì)算中面向緩存的遷移決策和資源分配[J]. 電子與信息學(xué)報(bào), 2024, 46(12): 4391-4398. doi: 10.11999/JEIT240427
引用本文: 楊守義, 韓昊錦, 郝萬(wàn)明, 陳怡航. 邊緣計(jì)算中面向緩存的遷移決策和資源分配[J]. 電子與信息學(xué)報(bào), 2024, 46(12): 4391-4398. doi: 10.11999/JEIT240427
YANG Shouyi, HAN Haojin, HAO Wanming, CHEN Yihang. Cache Oriented Migration Decision and Resource Allocation in Edge Computing[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4391-4398. doi: 10.11999/JEIT240427
Citation: YANG Shouyi, HAN Haojin, HAO Wanming, CHEN Yihang. Cache Oriented Migration Decision and Resource Allocation in Edge Computing[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4391-4398. doi: 10.11999/JEIT240427

邊緣計(jì)算中面向緩存的遷移決策和資源分配

doi: 10.11999/JEIT240427 cstr: 32379.14.JEIT240427
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(U1604159)
詳細(xì)信息
    作者簡(jiǎn)介:

    楊守義:男,教授,研究方向?yàn)闊o(wú)線(xiàn)移動(dòng)通信,毫米波通信,移動(dòng)云計(jì)算等

    韓昊錦:男,碩士生,研究方向?yàn)橐苿?dòng)邊緣計(jì)算、無(wú)線(xiàn)通信等

    郝萬(wàn)明:男,副教授,研究方向?yàn)楹撩撞ㄍㄐ?,太赫茲通信,大?guī)模MIMO技術(shù),物理層安全技術(shù),智能超表面技術(shù)等

    陳怡航:女,碩士生,研究方向?yàn)橐苿?dòng)邊緣計(jì)算

    通訊作者:

    楊守義 iesyyang@zzu.edu.cn

  • 中圖分類(lèi)號(hào): TN92

Cache Oriented Migration Decision and Resource Allocation in Edge Computing

Funds: The National Natural Science Foundation of China (U1604159)
  • 摘要: 邊緣計(jì)算通過(guò)在網(wǎng)絡(luò)邊緣側(cè)為用戶(hù)提供計(jì)算資源和緩存服務(wù),可以有效降低執(zhí)行時(shí)延和能耗。由于用戶(hù)的移動(dòng)性和網(wǎng)絡(luò)的隨機(jī)性,緩存服務(wù)和用戶(hù)任務(wù)會(huì)頻繁地在邊緣服務(wù)器之間遷移,增加了系統(tǒng)成本。該文構(gòu)建了一種基于預(yù)緩存的遷移計(jì)算模型,研究了資源分配、服務(wù)緩存和遷移決策的聯(lián)合優(yōu)化問(wèn)題。針對(duì)這一混合整數(shù)非線(xiàn)性規(guī)劃問(wèn)題,通過(guò)分解原問(wèn)題,分別采用庫(kù)恩塔克條件和二分搜索法對(duì)資源分配進(jìn)行優(yōu)化,并提出一種基于貪婪策略的遷移決策和服務(wù)緩存聯(lián)合優(yōu)化算法(JMSGS)獲得最優(yōu)遷移決策和緩存決策。仿真結(jié)果驗(yàn)證了所提算法的有效性,實(shí)現(xiàn)系統(tǒng)能耗和時(shí)延加權(quán)和最小。
  • 圖  1  系統(tǒng)模型

    圖  2  用戶(hù)偏好影響

    圖  3  帶寬對(duì)系統(tǒng)成本影響

    圖  4  應(yīng)用程序?qū)ο到y(tǒng)成本影響

    圖  5  服務(wù)器數(shù)量對(duì)系統(tǒng)成本影響

    圖  6  任務(wù)量大小對(duì)系統(tǒng)成本影響

    1  二分搜索的上行傳輸功率分配算法

     初始化:傳輸功率$ {p_i} $范圍,收斂閾值$r$
     (1) 根據(jù)式(21)計(jì)算得出$ \phi (p_i^{{\text{max}}}) $
     (2) if $ \phi (p_i^{{\text{max}}}) \lt 0 $ then
     (3)  $ p_i^* = p_i^{{\text{max}}} $
     (4) else
     (5) 初始化參數(shù)$ {p_l} = p_i^{{\text{min}}} $, $ {p_h} = p_i^{{\text{max}}} $
     (6)  end if
     (7)  if $ \phi ({p_m}) < 0 $ then
     (8)  ${p_l} = {p_m}$
     (9)  else
     (10) $ {p_h} = {p_m} $
     (11) end if
     (12) until $({p_h} - {p_l}) \le r$
     (13) $ p_i^* = ({p_l} + {p_h})/2 $
    下載: 導(dǎo)出CSV

    2  基于貪婪決策的遷移緩存聯(lián)合優(yōu)化算法

     初始化:${N_{{\text{local}}}}{\text{ = }}{N_{\text{0}}}$, ${N_{{\text{mec}}}} = \phi $
     (1) for $i{\text{ = 1:}}N$
     (2)  for $m{\text{ = 1:}}M_i^{{\text{sort}}}$
     (3)  計(jì)算用戶(hù)的代價(jià)增益函數(shù)$\Delta C(m)$
     (4) end for
     (5) 將每個(gè)用戶(hù)的代價(jià)增益函數(shù)倒序排列,加入序列$N_i^{{\text{sort}}}$
     (6) for $ i{\text{ = 1:}}N_i^{{\text{sort}}} $ 計(jì)算目標(biāo)函數(shù)值
     (7)  if ${\text{ET}}{{\text{C}}_{o + i}}{\text{ \lt ET}}{{\text{C}}_o}$
     (8)   $ \alpha = 1 $, $ \vartheta = 1 $ or $ \varpi $=1
     (9)  else
     (10) 保持原有模式
     (11) end if
     (12) if $ \varpi = 1 $, $ C_m^{\text} + C_m^{\text{a}} \le C_m^{\max } $
     (13) 將應(yīng)用程序緩存至服務(wù)器
     (14) else if $ X_m^{\min } < {X_i} $
     (15)   更新服務(wù)器狀態(tài)
     (16) else
     (17)   本地執(zhí)行
     (18) end if
    下載: 導(dǎo)出CSV

    表  1  仿真參數(shù)

    參數(shù) 數(shù)值
    任務(wù)大小$\lambda $(Mb) 10~20
    應(yīng)用程序大小$b$(Gb) 1~5
    本地計(jì)算能力${f_{{\text{loc}}}}$(GHz) 0.5~1.5
    邊緣服務(wù)器數(shù)目(個(gè)) 5~20
    噪聲功率譜密度${N_{\text{0}}}$(dBm/Hz) –174
    系統(tǒng)帶寬B(MHz) 1~2
    服務(wù)器計(jì)算能力${f_{{\text{es}}}}$(GHz) 15~25
    服務(wù)器緩存容量(Gb) 20~30
    下載: 導(dǎo)出CSV
  • [1] SHEN Xuemin, GAO Jie, WU Wen, et al. Holistic network virtualization and pervasive network intelligence for 6G[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 1–30. doi: 10.1109/COMST.2021.3135829.
    [2] OKEGBILE S D, CAI Jun, NIYATO D, et al. Human digital twin for personalized healthcare: Vision, architecture and future directions[J]. IEEE Network, 2023, 37(2): 262–269. doi: 10.1109/MNET.118.2200071.
    [3] CAI Qing, ZHOU Yiqing, LIU Ling, et al. Collaboration of heterogeneous edge computing paradigms: How to fill the gap between theory and practice[J]. IEEE Wireless Communications, 2024, 31(1): 110–117. doi: 10.1109/MWC.014.2200283.
    [4] LI Zhuo, ZHOU Xu, and QIN Yifang. A survey of mobile edge computing in the industrial internet[C]. 2019 7th International Conference on Information, Macao, China, 2019: 94–98. doi: 10.1109/ICICN.2019.8834959.
    [5] MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201.
    [6] CHEN Xiangyi, BI Yuanguo, CHEN Xueping, et al. Dynamic service migration and request routing for microservice in multicell mobile-edge computing[J]. IEEE Internet of Things Journal, 2022, 9(15): 13126–13143. doi: 10.1109/JIOT.2022.3140183.
    [7] CHEN Jiayuan, YI Changyan, WANG Ran, et al. Learning aided joint sensor activation and mobile charging vehicle scheduling for energy-efficient WRSN-based industrial IoT[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 5064–5078. doi: 10.1109/TVT.2022.3224443.
    [8] LIANG Zezu, LIU Yuan, LOK T M, et al. Multi-cell mobile edge computing: Joint service migration and resource allocation[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5898–5912. doi: 10.1109/TWC.2021.3070974.
    [9] LIANG Zezu, LIU Yuan, LOK T M, et al. Multiuser computation offloading and downloading for edge computing with virtualization[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4298–4311. doi: 10.1109/TWC.2019.2922613.
    [10] SHI You, YI Changyan, WANG Ran, et al. Service migration or task rerouting: A two-timescale online resource optimization for MEC[J]. IEEE Transactions on Wireless Communications, 2024, 23(2): 1503–1519. doi: 10.1109/TWC.2023.3290005.
    [11] XIA Zhuoqun, MAO Xiaoxiao, GU Ke, et al. Dual-mode data forwarding scheme based on interest tags for fog computing-based SIoVs[J]. IEEE Transactions on Network and Service Management, 2022, 19(3): 2780–2797. doi: 10.1109/TNSM.2022.3161539.
    [12] HU Yi, WANG Hao, WANG Liangyuan, et al. Joint deployment and request routing for microservice call graphs in data centers[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(11): 2994–3011. doi: 10.1109/TPDS.2023.3311767.
    [13] CHEN Long, ZHENG Shaojie, WU Yalan, et al. Resource and fairness-aware digital twin service caching and request routing with edge collaboration[J]. IEEE Wireless Communications Letters, 2023, 12(11): 1881–1885. doi: 10.1109/LWC.2023.3298200.
    [14] FENG Hao, GUO Songtao, YANG Li, et al. Collaborative data caching and computation offloading for multi-service mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 9408–9422. doi: 10.1109/TVT.2021.3099303.
    [15] SHEN Qiaoqiao, HU Binjie, and XIA Enjun. Dependency-aware task offloading and service caching in vehicular edge computing[J]. IEEE Transactions on Vehicular Technology, 2022, 71(12): 13182–13197. doi: 10.1109/TVT.2022.3196544.
    [16] HE Ting, KHAMFROUSH H, WANG Shiqiang, et al. It’s hard to share: Joint service placement and request scheduling in edge clouds with sharable and non-sharable resources[C]. 2018 IEEE 38th International Conference on Distributed Computing Systems, Vienna, Austria, 2018: 365–375. doi: 10.1109/ICDCS.2018.00044.
    [17] WANG Shiqiang, URGAONKAR R, HE Ting, et al. Dynamic service placement for mobile micro-clouds with predicted future costs[J]. IEEE Transactions on Parallel and Distributed Systems, 2017, 28(4): 1002–1016. doi: 10.1109/TPDS.2016.2604814.
    [18] 楊守義, 成昊澤, 黨亞萍. 基于集群協(xié)作的云霧混合計(jì)算資源分配和負(fù)載均衡策略[J]. 電子與信息學(xué)報(bào), 2023, 45(7): 2423–2431. doi: 10.11999/JEIT220719.

    YANG Shouyi, CHENG Haoze, and DANG Yaping. Resource allocation and load balancing strategy in cloud-fog hybrid computing based on cluster-collaboration[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2423–2431. doi: 10.11999/JEIT220719.
    [19] 楊守義, 李富康, 任瑞敏. 信任環(huán)境下考慮系統(tǒng)公平性的邊緣計(jì)算卸載策略和資源分配[J]. 通信學(xué)報(bào), 2024, 45(3): 142–154. doi: 10.11959/j.issn.1000-436x.2024030.

    YANG Shouyi, LI Fukang, and REN Ruimin. Edge computing offloading policies and resource allocation considering system fairness in trusted environments[J]. Journal on Communications, 2024, 45(3): 142–154. doi: 10.11959/j.issn.1000-436x.2024030.
    [20] LYU Xinchen, TIAN Hui, SENGUL C, et al. Multiuser joint task offloading and resource optimization in proximate clouds[J]. IEEE Transactions on Vehicular Technology, 2017, 66(4): 3435–3447. doi: 10.1109/TVT.2016.2593486.
  • 加載中
圖(6) / 表(3)
計(jì)量
  • 文章訪(fǎng)問(wèn)數(shù):  448
  • HTML全文瀏覽量:  162
  • PDF下載量:  66
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-05-29
  • 修回日期:  2024-11-07
  • 網(wǎng)絡(luò)出版日期:  2024-11-12
  • 刊出日期:  2024-12-01

目錄

    /

    返回文章
    返回