基于自適應(yīng)交互式多卡爾曼濾波模型的組合導(dǎo)航算法研究
doi: 10.11999/JEIT240426 cstr: 32379.14.JEIT240426
-
1.
蘭州交通大學(xué)自動化與電氣工程學(xué)院 蘭州 730070
-
2.
甘肅省高原交通信息工程及控制重點實驗室 蘭州 730070
Research on Combined Navigation Algorithm Based on Adaptive Interactive Multi-Kalman Filter Modeling
-
1.
School of Automation and Electeical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
-
2.
Gansu Provincial Key Laboratory of Traffic Information Engineering and Control, Lanzhou 730070, China
-
摘要: 在組合導(dǎo)航系統(tǒng)中,信息融合和定位精度取決于慣性系統(tǒng)和傳感器的特性,然而在實際應(yīng)用中獲取先驗知識仍然具有挑戰(zhàn)性。為解決車輛導(dǎo)航中衛(wèi)星信號質(zhì)量的變化及系統(tǒng)非線性降低組合導(dǎo)航系統(tǒng)性能的問題,該文提出一種基于多卡爾曼濾波器的模糊自適應(yīng)交互式多模型算法(FAIMM-MKF),將基于衛(wèi)星信號質(zhì)量的模糊控制器(Fuzzy Controller)與自適應(yīng)交互多模型(AIMM)相結(jié)合,通過組合無跡卡爾曼濾波(UKF)、迭代擴(kuò)展卡爾曼濾波(IEKF)和平方根容積卡爾曼濾波(SRCKF)3種不同的濾波器,適配車輛動力學(xué)模型,并通過車載半實物仿真實驗驗證該方法的性能。結(jié)果表明,在衛(wèi)星信號質(zhì)量發(fā)生改變的情況下,與傳統(tǒng)的交互式多模型算法相比,該方法顯著提高了車輛在復(fù)雜環(huán)境中的定位精度。Abstract: Practical applications struggle to obtain prior knowledge about inertial systems and sensors, affecting information fusion and positioning accuracy in combined navigation systems. To address the degradation of integrated navigation performance due to satellite signal quality changes and system nonlinearity in vehicle navigation, a Fuzzy Adaptive Interactive Multi-Model algorithm based on Multiple Kalman Filters (FAIMM-MKF) is proposed. It integrates a Fuzzy Controller based on satellite signal quality (Fuzzy Controller) and an Adaptive Interactive Multi-Model (AIMM). Improved Kalman filters such as Unscented Kalman Filter (UKF), Iterated Extended Kalman Filter (IEKF), and Square-Root Cubature Kalman Filter (SRCKF) are designed to match vehicle dynamics models. The method’s performance is verified through in-vehicle semi-physical simulation experiments. Results show that the method significantly improves vehicle positioning accuracy in complex environments with varying satellite signal quality compared to traditional interactive multi-model algorithms.
-
表 1 模糊規(guī)則表
HDOP 模型權(quán)重調(diào)整因子 衛(wèi)星拒止 衛(wèi)星較差 衛(wèi)星良好 SP SP SP EP MP SP EP SP LP EP SP SP 下載: 導(dǎo)出CSV
表 2 傳感器誤差參數(shù)
性能指標(biāo) 陀螺儀 加速度計 零偏 隨機(jī)游走 零偏 隨機(jī)游走 更新頻率 參數(shù) 5°/h 0.15°/$ \sqrt h $ 0.2 mg 800 ug/$ \sqrt {{\mathrm{Hz}}} $ 125 Hz 下載: 導(dǎo)出CSV
表 3 最大誤差和標(biāo)準(zhǔn)誤差對比
算法 東向速度(m/s) 北向速度(m/s) 緯度誤差(m) 經(jīng)度誤差(m) 最大誤差 標(biāo)準(zhǔn)差 最大誤差 標(biāo)準(zhǔn)差 最大誤差 標(biāo)準(zhǔn)差 最大誤差 標(biāo)準(zhǔn)差 IMM-UKF 1.080 0 0.048 5 0.347 1 0.055 2 1.151 5 0.395 6 –2.919 1 0.835 6 IMM-SRCKF 0.623 7 0.042 4 0.288 3 0.045 1 0.974 2 0.311 6 –2.439 4 0.705 3 IMM-MKF 0.483 5 0.038 6 0.280 6 0.043 8 0.941 0 0.291 5 –2.193 6 0.678 7 FAIMM-MKF 0.467 1 0.028 4 0.205 3 0.040 2 0.760 8 0.220 1 –1.962 5 0.589 3 下載: 導(dǎo)出CSV
表 4 平均絕對誤差和均方根誤差對比
算法 東向速度(m/s) 北向速度(m/s) 緯度(m) 經(jīng)度(m) MAE RMSE MAE RMSE MAE RMSE MAE RMSE IMM-UKF 0.030 2 0.055 0 0.038 1 0.059 6 0.309 3 0.397 1 0.568 3 0.873 6 IMM-SRCKF 0.024 9 0.043 0 0.027 9 0.048 8 0.235 2 0.311 7 0.481 5 0.743 3 IMM-MKF 0.024 6 0.039 9 0.026 1 0.047 6 0.190 4 0.303 4 0.440 1 0.729 5 FAIMM-MKF 0.018 3 0.029 1 0.025 6 0.043 6 0.164 5 0.226 9 0.364 0 0.642 0 下載: 導(dǎo)出CSV
-
[1] 徐曉蘇, 仲靈通. 一種基于M估計的抗差自適應(yīng)多模型組合導(dǎo)航算法[J]. 中國慣性技術(shù)學(xué)報, 2021, 29(4): 482–490. doi: 10.13695/j.cnki.12-1222/o3.2021.04.009.XU Xiaosu and ZHONG Lingtong. Robust adaptive multiple model integrated navigation algorithm based on M-estimation[J]. Journal of Chinese Inertial Technology, 2021, 29(4): 482–490. doi: 10.13695/j.cnki.12-1222/o3.2021.04.009. [2] ZHAO Huijun, LIU Jun, CHEN Xuemei, et al. Information monitoring and adaptive information fusion of multisource fusion navigation systems in complex environments[J]. IEEE Internet of Things Journal, 2024, 11(14): 25047–25056. doi: 10.1109/JIOT.2024.3391872. [3] JWO D J and CHANG W Y. Variational Bayesian based IMM robust GPS navigation filter[J]. Computers, Materials and Continua, 2022, 72(1): 755–773. doi: 10.32604/cmc.2022.025040. [4] HAN Bo, HUANG Hanqiao, LEI Lei, et al. An improved IMM algorithm based on STSRCKF for maneuvering target tracking[J]. IEEE Access, 2019, 7: 57795–57804. doi: 10.1109/ACCESS.2019.2912983. [5] MA Jian and GUO Xiaoting. Combination of IMM algorithm and ASTRWCKF for maneuvering target tracking[J]. IEEE Access, 2020, 8: 143095–143103. doi: 10.1109/ACCESS.2020.3013561. [6] 王常虹, 張大力, 夏紅偉, 等. GEO混合推力機(jī)動目標(biāo)跟蹤IMM算法[J]. 宇航學(xué)報, 2023, 44(3): 443–453. doi: 10.3873/j.issn.1000-1328.2023.03.013.WANG Changhong, ZHANG Dali, XIA Hongwei, et al. An IMM algorithm for tracking GEO maneuvering target with hybrid thrust[J]. Journal of Astronautics, 2023, 44(3): 443–453. doi: 10.3873/j.issn.1000-1328.2023.03.013. [7] 李俊. 基于聯(lián)邦卡爾曼濾波器的容錯多傳感器組合導(dǎo)航算法研究[D]. [碩士論文], 南京郵電大學(xué), 2023. doi: 10.27251/d.cnki.gnjdc.2023.000673.LI Jun. Research on fault tolerant multi-sensor integrated navigation algorithm based on federated Kalman filter[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2023. doi: 10.27251/d.cnki.gnjdc.2023.000673. [8] HWANG I, SEAH C E, and LEE S. A study on stability of the interacting multiple model algorithm[J]. IEEE Transactions on Automatic Control, 2017, 62(2): 901–906. doi: 10.1109/TAC.2016.2558156. [9] XIE Guo, SUN Lanlan, WEN Tao, et al. Adaptive transition probability matrix-based parallel IMM algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(5): 2980–2989. doi: 10.1109/TSMC.2019.2922305. [10] 陳維義, 何凡, 劉國強(qiáng), 等. 變結(jié)構(gòu)交互式多模型濾波和平滑算法[J]. 系統(tǒng)工程與電子技術(shù), 2023, 45(12): 4005–4012. doi: 10.12305/j.issn.1001-506X.2023.12.31.CHEN Weiyi, HE Fan, LIU Guoqiang, et al. Variable structure interactive multiple model filtering and smoothing algorithm[J]. Systems Engineering and Electronics, 2023, 45(12): 4005–4012. doi: 10.12305/j.issn.1001-506X.2023.12.31. [11] 曾浩, 母王強(qiáng), 楊順平. 高機(jī)動目標(biāo)跟蹤ATPM-IMM算法[J]. 通信學(xué)報, 2022, 43(7): 93–101. doi: 10.11959/j.issn.1000-436x.2022135.ZENG Hao, MU Wangqiang, and YANG Shunping. High maneuvering target tracking ATPM-IMM algorithm[J]. Journal on Communications, 2022, 43(7): 93–101. doi: 10.11959/j.issn.1000-436x.2022135. [12] FAN Peirong, CUI Xiaowei, ZHAO Sihao, et al. A two-step stochastic hybrid estimation for GNSS carrier phase tracking in urban environments[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 8503718. doi: 10.1109/TIM.2021.3095062. [13] 王偉, 劉萌, 薛冰. GPS輔助的SINS系統(tǒng)快速動基座初始對準(zhǔn)[J]. 哈爾濱工業(yè)大學(xué)學(xué)報, 2020, 52(12): 49–57. doi: 10.11918/201905245.WANG Wei, LIU Meng, and XUE Bing. Fast initial alignment of GPS-assisted SINS system on moving base[J]. Journal of Harbin Institute of Technology, 2020, 52(12): 49–57. doi: 10.11918/201905245. [14] JIA Di, JIANG Lu, CHEN Tianhua, et al. IMM based sequential fault-tolerant fusion estimation with heavy-tailed noises[C]. The 2022 34th Chinese Control and Decision Conference, Hefei, China, 2022: 499–504. doi: 10.1109/CCDC55256.2022.10033545. [15] 王振峰, 李飛, 王新宇, 等. 基于交互式多模型無跡卡爾曼濾波的懸架系統(tǒng)狀態(tài)估計[J]. 兵工學(xué)報, 2021, 42(2): 242–253. doi: 10.3969/j.issn.1000-1093.2021.02.003.WANG Zhenfeng, LI Fei, WANG Xinyu, et al. State estimation of suspension system based on interacting multiple model unscented Kalman filter[J]. Acta Armamentarii, 2021, 42(2): 242–253. doi: 10.3969/j.issn.1000-1093.2021.02.003. [16] 焦鵬悅, 楊德友, 蔡國偉. 基于Koopman算子與卡爾曼濾波的同步發(fā)電機(jī)動態(tài)狀態(tài)估計[J]. 電力系統(tǒng)保護(hù)與控制, 2024, 52(9): 27–35. doi: 10.19783/j.cnki.pspc.231088.JIAO Pengyue, YANG Deyou, and CAI Guowei. Dynamic state estimation for a synchronous generator based on the Koopman operator and Kalman filter[J]. Power System Protection and Control, 2024, 52(9): 27–35. doi: 10.19783/j.cnki.pspc.231088. [17] 盧道華, 宋世磊, 王佳, 等. SINS/DVL水下組合導(dǎo)航技術(shù)發(fā)展綜述[J]. 控制理論與應(yīng)用, 2022, 39(7): 1159–1170. doi: 10.7641/CTA.2021.10229.LU Daohua, SONG Shilei, WANG Jia, et al. Review on the development of SINS/DVL underwater integrated navigation technology[J]. Control Theory & Applications, 2022, 39(7): 1159–1170. doi: 10.7641/CTA.2021.10229. [18] SEO J W, KIM J S, KIM D J, et al. Vehicle localization using convolutional neural networks with IMM-EKF for automated vertical parking[C]. The 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 2022: 1976–1981. doi: 10.1109/ITSC55140.2022.9922403. [19] WU Qingdong, LI Chenxi, SHEN Tao, et al. Improved adaptive iterated extended Kalman filter for GNSS/INS/UWB-integrated fixed-point positioning[J]. CMES-Computer Modeling in Engineering and Sciences, 2022, 134(3): 1761–1772. doi: 10.32604/cmes.2022.020545. [20] HU Gaoge, GAO Bingbing, ZHONG Yongmin, et al. Unscented Kalman filter with process noise covariance estimation for vehicular ins/gps integration system[J]. Information Fusion, 2020, 64: 194–204. doi: 10.1016/j.inffus.2020.08.005. [21] SONG Rui, CHEN Xiyuan, FANG Yongchun, et al. Integrated navigation of GPS/INS based on fusion of recursive maximum likelihood IMM and square-root cubature Kalman filter[J]. ISA Transactions, 2020, 105: 387–395. doi: 10.1016/j.isatra.2020.05.049. [22] SUN Sibo, ZHANG Xinyu, ZHENG Ce, et al. Underwater acoustical localization of the black box utilizing single autonomous underwater vehicle based on the second-order time difference of arrival[J]. IEEE Journal of Oceanic Engineering, 2020, 45(4): 1268–1279. doi: 10.1109/JOE.2019.2950954. -