一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于圖像偏移角和多分支卷積神經網(wǎng)絡的旋轉不變模型設計

張萌 李響 張經緯

張萌, 李響, 張經緯. 基于圖像偏移角和多分支卷積神經網(wǎng)絡的旋轉不變模型設計[J]. 電子與信息學報, 2024, 46(12): 4522-4528. doi: 10.11999/JEIT240417
引用本文: 張萌, 李響, 張經緯. 基于圖像偏移角和多分支卷積神經網(wǎng)絡的旋轉不變模型設計[J]. 電子與信息學報, 2024, 46(12): 4522-4528. doi: 10.11999/JEIT240417
ZHANG Meng, LI Xiang, ZHANG Jingwei. Design of Rotation Invariant Model Based on Image Offset Angle and Multibranch Convolutional Neural Networks[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4522-4528. doi: 10.11999/JEIT240417
Citation: ZHANG Meng, LI Xiang, ZHANG Jingwei. Design of Rotation Invariant Model Based on Image Offset Angle and Multibranch Convolutional Neural Networks[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4522-4528. doi: 10.11999/JEIT240417

基于圖像偏移角和多分支卷積神經網(wǎng)絡的旋轉不變模型設計

doi: 10.11999/JEIT240417 cstr: 32379.14.JEIT240417
基金項目: 廣東省重點領域研發(fā)計劃(2021B1101270006)
詳細信息
    作者簡介:

    張萌:男,教授,博士生導師,研究方向為人工智能算法及硬件加速器協(xié)同設計、FPGA系統(tǒng)設計及應用等

    李響:男,碩士生,研究方向為人工智能及圖像處理算法

    張經緯:男,博士生,研究方向為FPGA智能計算,高層次綜合設計及人工智能編譯器

    通訊作者:

    李響 220220938961@lzu.edu.cn

  • 中圖分類號: TN911.73; TP391

Design of Rotation Invariant Model Based on Image Offset Angle and Multibranch Convolutional Neural Networks

Funds: The Key-Area Research and Development Program of Guangdong Province (2021B1101270006)
  • 摘要: 卷積神經網(wǎng)絡(CNN)具有平移不變性,但缺乏旋轉不變性。近幾年,為卷積神經網(wǎng)絡進行旋轉編碼已成為解決這一技術痛點的主流方法,但這需要大量的參數(shù)和計算資源。鑒于圖像是計算機視覺的主要焦點,該文提出一種名為圖像偏移角和多分支卷積神經網(wǎng)絡(OAMC)的模型用于實現(xiàn)旋轉不變。首先檢測輸入圖像的偏移角,并根據(jù)偏移角反向旋轉圖像;將旋轉后的圖像輸入無旋轉編碼的多分支結構卷積神經網(wǎng)絡,優(yōu)化響應模塊,以輸出最佳分支作為模型的最終預測。OAMC模型在旋轉后的手寫數(shù)字數(shù)據(jù)集上以最少的8 k參數(shù)量實現(xiàn)了96.98%的最佳分類精度。與在遙感數(shù)據(jù)集上的現(xiàn)有研究相比,模型僅用前人模型的1/3的參數(shù)量就可將精度最高提高8%。
  • 圖  1  偏移角的檢測與旋轉模塊整體流程圖

    圖  2  構建直角坐標系示意圖

    圖  3  OAMC-B模型的整體結構

    圖  4  36個旋轉子集的測試精度曲線

    表  1  旋轉MNIST數(shù)據(jù)集測試精度

    模型參數(shù)量 (k)精度 (%)
    ORN-8 (Align)[10]96983.76
    ORN-8 (ORPooling)[10]39783.33
    RotEqNet[5]10080.10
    Spherical CNN[15]6894.00
    E(2)-CNN[16]206894.37
    RIC-CNN[1]28995.52
    OAMC-1 (本文)863.18
    OAMC-2 (本文)885.06
    OAMC-4 (本文)896.98
    OAMC-8 (本文)893.70
    下載: 導出CSV

    表  2  遙感數(shù)據(jù)集測試精度

    模型 參數(shù)量 (k) 精度 (%)
    NWPU-10 MTARSI AID
    VGG16[20] 3372 82.33 60.15 54.59
    RIC-VGG16[1] 3372 91.65 72.21 66.22
    OAMC-4 981 92.91 75.69 74.31
    下載: 導出CSV
  • [1] MO Hanlin and ZHAO Guoying. RIC-CNN: Rotation-invariant coordinate convolutional neural network[J]. Pattern Recognition, 2024, 146: 109994. doi: 10.1016/j.patcog.2023.109994.
    [2] ZHU Tianyu, FERENCZI B, PURKAIT P, et al. Knowledge combination to learn rotated detection without rotated annotation[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 15518–15527. doi: 10.1109/CVPR52729.2023.01489.
    [3] HAN Jiaming, DING Jian, XUE Nan, et al. ReDet: A rotation-equivariant detector for aerial object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2785–2794. doi: 10.1109/CVPR46437.2021.00281.
    [4] LI Feiran, FUJIWARA K, OKURA F, et al. A closer look at rotation-invariant deep point cloud analysis[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 16198–16207. doi: 10.1109/ICCV48922.2021.01591.
    [5] MARCOS D, VOLPI M, KOMODAKIS N, et al. Rotation equivariant vector field networks[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5058–5067. doi: 10.1109/ICCV.2017.540.
    [6] EDIXHOVEN T, LENGYEL A, and VAN GEMERT J C. Using and abusing equivariance[C]. Proceedings of 2023 IEEE/CVF International Conference on Computer Vision Workshops, Paris, France, 2023: 119–128. doi: 10.1109/ICCVW60793.2023.00019.
    [7] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791.
    [8] JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 2017–2025.
    [9] LAPTEV D, SAVINOV N, BUHMANN J M, et al. TI-POOLING: Transformation-invariant pooling for feature learning in convolutional neural networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 289–297. doi: 10.1109/CVPR.2016.38.
    [10] ZHOU Yanzhao, YE Qixiang, QIU Qiang, et al. Oriented response networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4961–4970. doi: 10.1109/CVPR.2017.527.
    [11] WORRALL D E, GARBIN S J, TURMUKHAMBETOV D, et al. Harmonic networks: Deep translation and rotation equivariance[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7168–7177. doi: 10.1109/CVPR.2017.758.
    [12] WEILER M, HAMPRECHT F A, and STORATH M. Learning steerable filters for rotation equivariant CNNs[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 849–858. doi: 10.1109/CVPR.2018.00095.
    [13] FIRAT H. Classification of microscopic peripheral blood cell images using multibranch lightweight CNN-based model[J]. Neural Computing and Applications, 2024, 36(4): 1599–1620. doi: 10.1007/s00521-023-09158-9.
    [14] WEI Xuan, SU Shixiang, WEI Yun, et al. Rotational convolution: Rethinking convolution for downside fisheye images[J]. IEEE Transactions on Image Processing, 2023, 32: 4355–4364. doi: 10.1109/TIP.2023.3298475.
    [15] COHEN T S, GEIGER M, KOEHLER J, et al. Spherical CNNs[C]. The Sixth International Conference on Learning Representations, Vancouver, Canada, 2018.
    [16] WEILER M and CESA G. General e(2)-equivariant steerable cnns[J]. Advances in Neural Information Processing Systems, 2019, 32.
    [17] CHENG Gong, HAN Junwei, ZHOU Peicheng, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119–132. doi: 10.1016/j.isprsjprs.2014.10.002.
    [18] WU Zhize, WAN Shouhong, WANG Xiaofeng, et al. A benchmark data set for aircraft type recognition from remote sensing images[J]. Applied Soft Computing, 2020, 89: 106132. doi: 10.1016/j.asoc.2020.106132.
    [19] XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945.
    [20] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
  • 加載中
圖(4) / 表(2)
計量
  • 文章訪問數(shù):  241
  • HTML全文瀏覽量:  73
  • PDF下載量:  28
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-05-29
  • 修回日期:  2024-11-08
  • 網(wǎng)絡出版日期:  2024-11-18
  • 刊出日期:  2024-12-01

目錄

    /

    返回文章
    返回