面向地電極電流場透地通信的兩階段長相關(guān)信號捕獲方法
doi: 10.11999/JEIT240399 cstr: 32379.14.JEIT240399
-
1.
北京信息科技大學現(xiàn)代測控技術(shù)教育部重點實驗室 北京 102206
-
2.
北京信息科技大學信息與通信工程學院 北京 102206
Two-stage Long-correlation Signal Acquisition Method for Through-the-earth Communication of the Ground Electrode Current Field
-
1.
Key Laboratory of Modern Measurement and Control Technology of the Ministry of Education, Beijing Information Science and Technology University, Beijing 102206, China
-
2.
Institute of Information and Communication Engineering, Beijing Information Science and Technology University, Beijing 102206, China
-
摘要: 地電極電流場透地通信可以為地下強遮蔽空間信息傳輸提供解決方案。針對接收的電流場信號信噪比(SNR)低、易畸變且受載波頻偏影響大導致捕獲困難的問題,該文設(shè)計一種長同步信號幀結(jié)構(gòu),在此基礎(chǔ)上提出一種聯(lián)合頻偏粗估計和精估計的兩階段長相關(guān)信號捕獲算法。該算法第1階段利用接收時域信號中的訓練符號,依據(jù)最大似然算法進行采樣間隔偏差粗估計,并計算采樣點補償間隔粗估計值。第2階段結(jié)合粗估計值和接收信噪比,確定采樣點補償間隔精估計值的遍歷范圍,進而設(shè)計本地補償后的長相關(guān)模板信號,實現(xiàn)電流場信號的精確捕獲。本研究在距離地面30.26 m的地下強遮蔽空間中進行了算法性能驗證。實驗結(jié)果表明,與傳統(tǒng)的滑動相關(guān)算法相比,該文所提算法具有更高的捕獲成功概率。
-
關(guān)鍵詞:
- 強遮蔽空間 /
- 透地通信 /
- 地電極電流場 /
- 長相關(guān)模板信號 /
- 捕獲算法
Abstract: Wireless through-the-earth communication provides a solution for information transmission in heavily shielded space. The received current field signal has low Signal-to-Noise Ratio (SNR), is easily distorted, and is greatly affected by carrier frequency offset, making signal acquisition difficult. In this paper, a long synchronization signal frame structure is designed and a two-stage long correlation signal acquisition algorithm is proposed that combines coarse and fine frequency offset estimation. In the first stage, the training symbols in the received time-domain signal are used for coarse estimation of sampling interval deviation based on the maximum likelihood algorithm, and the coarse estimation value of the sampling point compensation interval is calculated. In the second stage, the coarse estimation value and the received SNR are combined to determine the traversal range of the fine estimation value of the sampling point compensation interval. A long correlation template signal with local compensation is designed to achieve accurate acquisition of the current field signal. The algorithm’s performance is verified in a heavily shielded space located 30.26 m below the ground. Experimental results show that compared to traditional sliding correlation algorithms, the proposed algorithm has a higher acquisition success probability. -
1 基于粗估計值$ \text{N} $遍歷計算頻偏修正后本地長同步信號
輸入:$ {{\mathrm{Sync}}\_L} $ //本地長同步信號 輸出:$ {{\mathrm{Sync}}\_L}{'} $ //頻偏修正后本地長同步信號 (1) for $ {N'} $ = $ {N}{-}{x} $ to $ {N}{+}{x} $ do // $ {N'} $在范圍內(nèi)遍歷 (2) $ {i} $ = $ {i} $ +1 // $ {i} $的初始值為0 (3) if $\vartheta < 0$ $ {{\mathrm{Sync}}\_L}{'}{(}{i}{)} $ = interpolation ($ {{\mathrm{Sync}}\_L} $, $ {N'}{(}{i}{)} $) //在本地長同步信號信號上每隔$ {N'}{(}{i}{)} $個點插入1個樣值,生
成第$ {i} $個頻偏修正后本地長同步信號(4) else $ {{\mathrm{Sync}}\_L}{'}{(}{i}{)} $ = decline ($ {{\mathrm{Syn}}{\mathrm{c}}\_L} $, $ {N'}{(}{i}{)} $) //在本地長同步信號信號上每隔$ {N'}{(}{i}{)} $個點去除1個采樣點 (5) end (6) end (7) return $ {{\mathrm{Sync}}\_L}{'}{(}{i}{)} $ 下載: 導出CSV
2 采樣點補償間隔精估計值計算
輸入:$ \text{Sync\_L}{'} $ // 頻偏修正后本地長同步信號 $ {R} $// 接收信號 輸出:$ {N'} $// $ \text{Sync\_L}{'} $與$ {R} $滑動相關(guān)峰值最大時對應的采樣點補
償間隔精估計值(1) for $ {i} $ = 1 To $ {{l}}_{{1}}{-}{{l}}_{{2}}{-1} $ do // 相關(guān)滑動窗口,共有$ {{l}}_{{1}}{-}{{l}}_{{2}}{-1} $個。 (2) $ {g}{(}{i}{)} $ = corr($ {R} $, $ \text{Sync\_L}{'}{(}{i}{)} $) // $ {R} $與 $ \text{Sync\_L}{'}{(}{i}{)} $進行滑動相關(guān) (3) $ {{K}}_{{i}} $ = max($ q7j3ldu95{(}{i}{)} $) //獲取相關(guān)峰值 (4) end (5) $ {N'} $=find(max($ {{K}}_{{i}}{} $)) //獲取相關(guān)峰值最大時對應的采樣點補償間隔精估計值 (6) return $ {N'} $ 下載: 導出CSV
表 1 仿真參數(shù)
參數(shù)名稱 參數(shù)值 發(fā)送信號載波頻率(Hz) 10 發(fā)射機時鐘頻率(MHz) 10 收發(fā)機時鐘頻率偏差(PPM) 0.1 [16] 收發(fā)機采樣頻率(Hz) 500 信道類型 加性高斯白噪聲信道 信噪比(dB) –3~6 同步信號長度 30~70符號 下載: 導出CSV
表 2 不同算法捕獲成功概率在不同同步信號點數(shù)下達到95%所需信噪比(dB)
接收同步信號
點數(shù)滑動相關(guān)
捕獲算法粗估計捕獲
算法長相關(guān)捕獲
算法1 500 6 4 3 2 000 5 2 0 2 500 – 0 –2 3 000 – –1 –2 3 500 – –2 –4 下載: 導出CSV
-
[1] MA Honglei, LIU Erwu, WANG Rui, et al. Antenna optimization for decode-and-forward relay in magnetic induction communications[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 3449–3453. doi: 10.1109/TVT.2019.2963357. [2] JULTHOCHAI S, KHAMSALEE P, and WONGSAN R. An experimental study of performance enhancement of medium-frequency small loop antennas for through-the-earth at 350 kHz[C]. 2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Nakhon Phanom, Thailand, 2023: 1–4. doi: 10.1109/ECTI-CON58255.2023.10153298. [3] ZHOU Chenming, SNYDER D P, EPSTEIN B, et al. Measurement of ambient magnetic field noise for through-the-earth (TTE) communications and historical comparisons[J]. IEEE Transactions on Electromagnetic Compatibility, 2024, 66(3): 720–727. doi: 10.1109/TEMC.2024.3354735. [4] DAMIANO N W, YAN Lincan, WHISNER B, et al. Simulation and measurement of through-the-earth, extremely low-frequency signals using copper-clad steel ground rods[J]. IEEE Transactions on Industry Applications, 2017, 53(5): 5088–5095. doi: 10.1109/TIA.2017.2703625. [5] WU Lipeng, ZHANG Wenwei, SONG Xianjin, et al. Research on electromagnetic field characteristics of rotating-magnet based mechanical antenna through the earth[J]. International Journal of Applied Electromagnetics and Mechanics, 2024, 72(2): 123–139. doi: 10.3233/JAE-230080. [6] PRUEKCHATSIRI C, JANTAUPALEE A, KHAMSALEE P, et al. An experimental study of electrodes for through-the-earth 350 kHz MF Communication[C]. 2023 IEEE International Symposium On Antennas And Propagation (ISAP), Kuala Lumpur, Malaysia, 2023: 1–2. doi: 10.1109/ISAP57493.2023.10389116. [7] ZHOU Chenming, SYNDER D P, EPSTEIN B, et al. Magnetic field noise in the ultra-low frequency (ULF) band and historical comparisons[C]. 2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), Spokane, USA, 2022: 439–442. doi: 10.1109/EMCSI39492.2022.9889418. [8] CHAVES B P and BRAGA A J. An analytical propagation model based on dyadic green’s functions for TTE communications in an arbitrary stratified soil[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(11): 11240–11245. doi: 10.1109/TAP.2022.3184524. [9] 龔永儉, 張長軒, 程立康, 等. 地電場環(huán)境干擾跟蹤分析關(guān)鍵問題研究[J]. 高原地震, 2020, 32(1): 26–38. doi: 10.3969/j.issn.1005-586X.2020.01.005.GONG Yongjian, ZHANG Changxuan, CHENG Likang, et al. Study on key problems of tracking analysis of the geoelectric field environmental interference[J]. Plateau Earthquake Research, 2020, 32(1): 26–38. doi: 10.3969/j.issn.1005-586X.2020.01.005. [10] JANTAUPALEE A, KHAMSALEE P, and WONGSAN R. Low-frequency wave propagation in the cave[C]. 2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Nakhon Phanom, Thailand, 2023: 1–4. doi: 10.1109/ECTI-CON58255.2023.10153170. [11] 楊天繪. 基于電流場傳播的礦井透地通信系統(tǒng)研究[D]. [碩士論文], 西安電子科技大學, 2017.YANG Tianhui. Research on through-the-earth communication system for mines based on current field propagation[D]. [Master dissertation], Xidian University, 2017. [12] YANG Liu, ZHANG Hang, CAI Yang, et al. Blind carrier frequency offset estimation for MIMO-OFDM systems based on the banded structure of covariance matrices for constant modulus signals[J]. IEEE Access, 2018, 6: 51804–51813. doi: 10.1109/ACCESS.2018.2870278. [13] 侯文壯. 地下防空洞無線透地通信系統(tǒng)設(shè)計與實現(xiàn)[D]. [碩士論文], 哈爾濱工程大學, 2023.HOU Wenzhuang. Design and implementation of wireless through-the-earth communication system for underground air raid shelters[D]. [Master dissertation], Harbin Engineering University, 2023. [14] ZHANG Gan, XU Zhan, CHEN Jinhui, et al. OFDM signal design based on electrode-based through-the-earth communication[C]. 2021 20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS), London, UK, 2021: 40–45. doi: 10.1109/IUCC-CIT-DSCI-SmartCNS55181.2021.00021. [15] JANTAUPALEE A, WONGSAN R, KHAMSALEE P, et al. A study of radio wave propagation in the cave for developing the through-the-earth application[J]. GEOMATE Journal, 2024, 26(118): 74–86. [16] 王菊鳳, 張宇, 黃徐瑞晗, 等. 對相對頻率偏差的探討與思考[J]. 計量與測試技術(shù), 2022, 49(9): 1–3. doi: 10.15988/j.cnki.1004-6941.2022.9.001.WANG Jufeng, ZHANG Yu, HUANG Xuruihan, et al. Discussion and reflection on relative frequency offset[J]. Metrology & Measurement Technique, 2022, 49(9): 1–3. doi: 10.15988/j.cnki.1004-6941.2022.9.001. -