一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

結(jié)合貝葉斯Autoformer的多維自適應(yīng)短期電力負(fù)荷概率預(yù)測(cè)方法

周師琦 王俊帆 賴俊升 袁毓杰 董哲康

周師琦, 王俊帆, 賴俊升, 袁毓杰, 董哲康. 結(jié)合貝葉斯Autoformer的多維自適應(yīng)短期電力負(fù)荷概率預(yù)測(cè)方法[J]. 電子與信息學(xué)報(bào), 2024, 46(12): 4432-4440. doi: 10.11999/JEIT240398
引用本文: 周師琦, 王俊帆, 賴俊升, 袁毓杰, 董哲康. 結(jié)合貝葉斯Autoformer的多維自適應(yīng)短期電力負(fù)荷概率預(yù)測(cè)方法[J]. 電子與信息學(xué)報(bào), 2024, 46(12): 4432-4440. doi: 10.11999/JEIT240398
ZHOU Shiqi, WANG Junfan, LAI Junsheng, YUAN Yujie, DONG Zhekang. Multi-view Adaptive Probabilistic Load Forecasting Combing Bayesian Autoformer Network[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4432-4440. doi: 10.11999/JEIT240398
Citation: ZHOU Shiqi, WANG Junfan, LAI Junsheng, YUAN Yujie, DONG Zhekang. Multi-view Adaptive Probabilistic Load Forecasting Combing Bayesian Autoformer Network[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4432-4440. doi: 10.11999/JEIT240398

結(jié)合貝葉斯Autoformer的多維自適應(yīng)短期電力負(fù)荷概率預(yù)測(cè)方法

doi: 10.11999/JEIT240398 cstr: 32379.14.JEIT240398
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(62206062),長(zhǎng)三角科技創(chuàng)新共同體聯(lián)合攻關(guān)重點(diǎn)項(xiàng)目(2023CSJGG1300),浙江省屬高?;究蒲袠I(yè)務(wù)費(fèi)項(xiàng)目(GK229909299001-06)
詳細(xì)信息
    作者簡(jiǎn)介:

    周師琦:女, 博士生,研究方向?yàn)橹悄茈娋W(wǎng)、能源管理、深度學(xué)習(xí)

    王俊帆:女, 博士生,研究方向?yàn)槟茉垂芾?、深度學(xué)習(xí)

    賴俊升:男, 教授,研究方向?yàn)橹悄茈娋W(wǎng)、能源管理

    袁毓杰:女, 講師,研究方向?yàn)橹悄茈娋W(wǎng)、能源管理

    董哲康:男, 副教授,研究方向?yàn)槟茉垂芾怼⑸疃葘W(xué)習(xí)

    通訊作者:

    袁毓杰 18114026@bjtu.edu.cn

  • 中圖分類號(hào): TN911.7; TM715; TP18

Multi-view Adaptive Probabilistic Load Forecasting Combing Bayesian Autoformer Network

Funds: The National Natural Science Foundation of China (62206062), Yangtze River Delta Science and Technology Innovation Community Jointly Tackled Key Project (2023CSJGG1300), The Fundamental Research Funds for the Provincial University of Zhejiang (GK229909299001-06)
  • 摘要: 建立準(zhǔn)確的電力負(fù)荷短期預(yù)測(cè)模型對(duì)于電力系統(tǒng)的穩(wěn)定運(yùn)行和智能化進(jìn)程至關(guān)重要。目前的主流預(yù)測(cè)方法無(wú)法很好地突破數(shù)據(jù)波動(dòng)性和模型不確定性兩個(gè)問題?;诖?,該文提出一種基于貝葉斯Autoformer的多維自適應(yīng)短期電力負(fù)荷概率預(yù)測(cè)方法。具體地,提出自適應(yīng)特征提取方法獲取多維度特征,通過捕捉多尺度特征和時(shí)頻局部信息,增強(qiáng)模型對(duì)負(fù)荷數(shù)據(jù)中高波動(dòng)性和非線性特征的處理能力。其次,提出基于貝葉斯Autoformer的預(yù)測(cè)模型,它可以捕獲負(fù)荷數(shù)據(jù)中重要子序列特征以及不確定性,并通過貝葉斯優(yōu)化方法實(shí)現(xiàn)概率預(yù)測(cè)分布和參數(shù)分布的動(dòng)態(tài)更新。所提模型在3個(gè)量級(jí)(GW, MW, KW)的實(shí)際負(fù)荷數(shù)據(jù)集上進(jìn)行一系列實(shí)驗(yàn)分析(對(duì)比分析、自適應(yīng)分析、魯棒性分析)。結(jié)果表明,所提預(yù)測(cè)模型在自適應(yīng)和準(zhǔn)確性方面具有優(yōu)越的性能,均方根誤差(RMSE)、彈球損失(Pinball Loss)、連續(xù)概率評(píng)分(CRPS),相較對(duì)比方法分別提升1.9%, 24.2%, 4.5%。
  • 圖  1  電力負(fù)荷數(shù)據(jù)的波動(dòng)性分析

    圖  2  電力負(fù)荷數(shù)據(jù)在不同時(shí)期的分布情況

    圖  3  電力負(fù)荷數(shù)據(jù)的漂移檢測(cè)結(jié)構(gòu)

    圖  4  基于貝葉斯 Autoformer 的多維自適應(yīng)電負(fù)荷概率預(yù)測(cè)模型

    圖  5  超參數(shù)設(shè)置

    圖  6  3 個(gè)電力負(fù)荷數(shù)據(jù)集在不同預(yù)測(cè)維度下概率預(yù)測(cè)的結(jié)果

    圖  7  不同特征選擇方法下的預(yù)測(cè)結(jié)果

    圖  8  不同預(yù)測(cè)維度下在線自適應(yīng)模型和離線模型的預(yù)測(cè)結(jié)果

    表  1  模型的超參數(shù)設(shè)置

    參數(shù)
    編碼層數(shù)lE4
    解碼層數(shù)lD4
    多頭注意力h8
    模型維度dM24
    滑動(dòng)窗口長(zhǎng)度lW168
    滑動(dòng)窗口步長(zhǎng)dW1
    下載: 導(dǎo)出CSV

    表  2  不同預(yù)測(cè)模型在3 個(gè)數(shù)據(jù)集下的性能對(duì)比結(jié)果

    方法 New England (GW) ASU (MW) 400builds (KW)
    RMSE Pinball CRPS RMSE Pinball CRPS RMSE Pinball CRPS
    FPSwq2Q[10] 1.065 9 0.194 7 0.998 1 0.176 7 0.014 73 0.207 1 0.069 1 0.019 6 0.059 2
    QLSTM[8] 0.985 73 0.117 92 0.692 4 0.179 3 0.016 2 0.200 7 0.062 3 0.013 7 0.061 9
    *BNN[15] 1.217 7 0.161 8 0.595 73 0.182 2 0.016 7 0.195 9 0.140 8 0.015 9 0.094 2
    *BSDeT[14] 1.032 4 0.148 2 0.974 3 0.148 93 0.013 72 0.130 82 0.058 23 0.010 93 0.045 22
    **MQR[12] 1.527 3 0.216 9 0.631 0 0.174 9 0.016 8 0.201 5 0.091 6 0.020 7 0.072 8
    **APLF[13] 0.911 02 0.132 83 0.506 72 0.140 62 0.018 2 0.144 73 0.032 22 0.010 52 0.048 13
    本文 0.910 91 0.078 01 0.495 11 0.139 41 0.012 41 0.120 11 0.031 41 0.010 31 0.023 71
    注:上標(biāo)1,2,3分別表示排名第1、第2和第3;*基于BNN的概率預(yù)測(cè)模型,**為自適應(yīng)概率預(yù)測(cè)模型
    下載: 導(dǎo)出CSV

    表  3  不同注意力機(jī)制用于貝葉斯概率預(yù)測(cè)的比較

    方法 New England ASU 400 builds
    RMSE Pinball CRPS RMSE Pinball CRPS RMSE Pinball CRPS
    BNN+Full 0.943 5 0.082 5 0.790 5 0.190 8 0.015 1 0.147 6 0.032 5 0.010 9 0.024 9
    BNN+Log 0.930 2 0.081 0 0.778 5 0.189 8 0.015 1 0.146 6 0.0322 0.0107 0.0244
    BNN+In 0.943 5 0.079 5 0.763 5 0.190 3 0.014 91 0.146 2 0.031 7 0.011 2 0.024 1
    BNN+Auto 0.915 01 0.078 01 0.742 51 0.188 91 0.014 91 0.144 21 0.031 41 0.010 31 0.023 91
    注:上標(biāo)1表示排名第1。
    下載: 導(dǎo)出CSV

    表  4  概率預(yù)測(cè)模型的穩(wěn)定性分析

    評(píng)價(jià)指標(biāo) RMSE Pinball CRPS
    New
    England
    對(duì)照組 0.9150 0.0780 0.7425
    噪聲組 0.9157 0.0784 0.7431
    ASU 對(duì)照組 0.1889 0.0149 0.1442
    噪聲組 0.1890 0.0150 0.1446
    400build 對(duì)照組 0.0314 0.0103 0.0239
    噪聲組 0.0318 0.0107 0.0240
    下載: 導(dǎo)出CSV
  • [1] LAI C S, YANG Yuxiang, PAN Keda, et al. Multi-view neural network ensemble for short and mid-term load forecasting[J]. IEEE Transactions on Power Systems, 2021, 36(4): 2992–3003. doi: 10.1109/TPWRS.2020.3042389.
    [2] KIM N, PARK H, LEE J, et al. Short-term electrical load forecasting with multidimensional feature extraction[J]. IEEE Transactions on Smart Grid, 2022, 13(4): 2999–3013. doi: 10.1109/TSG.2022.3158387.
    [3] LI Jian, DENG Daiyu, ZHAO Junbo, et al. A novel hybrid short-term load forecasting method of smart grid using MLR and LSTM neural network[J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2443–2452. doi: 10.1109/TII.2020.3000184.
    [4] DANG Sanlei, PENG Long, ZHAO Jingming, et al. A quantile regression random forest-based short-term load probabilistic forecasting method[J]. Energies, 2022, 15(2): 663. doi: 10.3390/en15020663.
    [5] 王俊帆, 陳毅, 高明煜, 等. 智能交通感知新范式: 面向元宇宙的交通標(biāo)志檢測(cè)架構(gòu)[J]. 電子與信息學(xué)報(bào), 2024, 46(3): 777–789. doi: 10.11999/JEIT230357.

    WANG Junfan, CHEN Yi, GAO Mingyu, et al. A new paradigm for intelligent traffic perception: A traffic sign detection architecture for the metaverse[J]. Journal of Electronics and Information Technology, 2024, 46(3): 777–789. doi: 10.11999/JEIT230357.
    [6] WANG Bingzhi, MAZHARI M, and CHUNG C Y. A novel hybrid method for short-term probabilistic load forecasting in distribution networks[J]. IEEE Transactions on Smart Grid, 2022, 13(5): 3650–3661. doi: 10.1109/TSG.2022.3171499.
    [7] ZHANG Dongxue, WANG Shuai, LIANG Yuqiu, et al. A novel combined model for probabilistic load forecasting based on deep learning and improved optimizer[J]. Energy, 2023, 264: 126172. doi: 10.1016/j.energy.2022.126172.
    [8] WANG Yi, GAN Dahua, SUN Mingyang, et al. Probabilistic individual load forecasting using pinball loss guided LSTM[J]. Applied Energy, 2019, 235: 10–20. doi: 10.1016/j.apenergy.2018.10.078.
    [9] LUO Long, DONG Jizhe, KONG Weizhe, et al. Short-term probabilistic load forecasting using quantile regression neural network with accumulated hidden layer connection structure[J]. IEEE Transactions on Industrial Informatics, 2024, 20(4): 5818–5828. doi: 10.1109/TII.2023.3341242.
    [10] FAUSTINE A and PEREIRA L. FPSeq2Q: Fully parameterized sequence to quantile regression for net-load forecasting with uncertainty estimates[J]. IEEE Transactions on Smart Grid, 2022, 13(3): 2440–2451. doi: 10.1109/TSG.2022.3148699.
    [11] LEMOS-VINASCO J, BACHER P, and M?LLER J K. Probabilistic load forecasting considering temporal correlation: Online models for the prediction of households’ electrical load[J]. Applied Energy, 2021, 303: 117594. doi: 10.1016/j.apenergy.2021.117594.
    [12] BRACALE A, CARAMIA P, DE FALCO P, et al. Multivariate quantile regression for short-term probabilistic load forecasting[J]. IEEE Transactions on Power Systems, 2020, 35(1): 628–638. doi: 10.1109/TPWRS.2019.2924224.
    [13] áLVAREZ V, MAZUELAS S, and LOZANO J A. Probabilistic load forecasting based on adaptive online learning[J]. IEEE Transactions on Power Systems, 2021, 36(4): 3668–3680. doi: 10.1109/TPWRS.2021.3050837.
    [14] YU Binbin, LI Jianjing, LIU Che, et al. A novel short-term electrical load forecasting framework with intelligent feature engineering[J]. Applied Energy, 2022, 327: 120089. doi: 10.1016/j.apenergy.2022.120089.
    [15] BRUSAFERRI A, MATTEUCCI M, SPINELLI S, et al. Probabilistic electric load forecasting through Bayesian mixture density networks[J]. Applied Energy, 2022, 309: 118341. doi: 10.1016/j.apenergy.2021.118341.
    [16] ISO NEW England[EB/OL]. https://www.iso-ne.com, 2024.
    [17] Metabolism[OL]. https://cm.asu.edu, 2023.
    [18] ANAO[OL]. https://www.anao.gov.au/work/performance-audit, 2023.
    [19] FEKRI M N, PATEL H, GROLINGER K, et al. Deep learning for load forecasting with smart meter data: Online adaptive recurrent neural network[J]. Applied Energy, 2021, 282: 116177. doi: 10.1016/j.apenergy.2020.116177.
    [20] FAN Guofeng, PENG Liling, and HONG W C. Short-term load forecasting based on empirical wavelet transform and random forest[J]. Electrical Engineering, 2022, 104(6): 4433–4449. doi: 10.1007/s00202-022-01628-y.
    [21] 董哲康, 錢智凱, 周廣東, 等. 基于憶阻的全功能巴甫洛夫聯(lián)想記憶電路的設(shè)計(jì)、實(shí)現(xiàn)與分析[J]. 電子與信息學(xué)報(bào), 2022, 44(6): 2080–2092. doi: 10.11999/JEIT210376.

    DONG Zhekang, QIAN Zhikai, ZHOU Guangdong, et al. Memory circuit design, implementation and analysis based on Memristor full-function Pavlov associative[J]. Journal of Electronics and Information Technology, 2022, 44(6): 2080–2092. doi: 10.11999/JEIT210376.
    [22] CHEN Minghao, PENG Houwen, FU Jianlong, et al. AutoFormer: Searching transformers for visual recognition[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 12270–12280. doi: 10.1109/ICCV48922.2021.01205.
    [23] CAO Defu, WANG Yujing, DUAN Juanyong, et al. Spectral temporal graph neural network for multivariate time-series forecasting[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1491.
    [24] LI Lei, XUE Zhigang, and DU Xiuquan. ASCRB: Multi-view based attentional feature selection for CircRNA-binding site prediction[J]. Computers in Biology and Medicine, 2023, 162: 107077. doi: 10.1016/j.compbiomed.2023.107077.
  • 加載中
圖(8) / 表(4)
計(jì)量
  • 文章訪問數(shù):  453
  • HTML全文瀏覽量:  267
  • PDF下載量:  50
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-05-21
  • 修回日期:  2024-08-26
  • 網(wǎng)絡(luò)出版日期:  2024-08-30
  • 刊出日期:  2024-12-01

目錄

    /

    返回文章
    返回