基于密集殘差和質(zhì)量評(píng)估引導(dǎo)的頻率分離生成對(duì)抗超分辨率重構(gòu)網(wǎng)絡(luò)
doi: 10.11999/JEIT240388 cstr: 32379.14.JEIT240388
-
1.
哈爾濱理工大學(xué)測(cè)控技術(shù)與通信工程學(xué)院 哈爾濱 150080
-
2.
哈爾濱理工大學(xué)模式識(shí)別與信息感知黑龍江省重點(diǎn)實(shí)驗(yàn)室 哈爾濱 150080
Frequency Separation Generative Adversarial Super-resolution Reconstruction Network Based on Dense Residual and Quality Assessment
-
1.
School of Measurement and Control Technology and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China
-
2.
Heilongjiang Province Key Laboratory of Pattern Recognition and Information Perception, Harbin University of Science and Technology, Harbin 150080, China
-
摘要: 生成對(duì)抗網(wǎng)絡(luò)因其為盲超分辨率重構(gòu)提供了新的思路而備受關(guān)注。針對(duì)現(xiàn)有方法未充分考慮圖像退化過(guò)程中的低頻保留特性而對(duì)高低頻成分采用相同的處理方式,缺乏對(duì)頻率細(xì)節(jié)有效利用,難以獲得較好重構(gòu)效果的問(wèn)題,該文提出一種基于密集殘差和質(zhì)量評(píng)估引導(dǎo)的頻率分離生成對(duì)抗超分辨率重構(gòu)網(wǎng)絡(luò)。該網(wǎng)絡(luò)采用頻率分離思想,對(duì)圖像的高頻和低頻信息分開(kāi)處理,從而提高高頻信息捕捉能力,簡(jiǎn)化低頻特征處理。該文對(duì)生成器中的基礎(chǔ)塊進(jìn)行設(shè)計(jì),將空間特征變換層融入密集寬激活殘差中,增強(qiáng)深層特征表征能力的同時(shí)對(duì)局部信息差異化處理。此外,利用視覺(jué)幾何組網(wǎng)絡(luò)(VGG)設(shè)計(jì)了專門針對(duì)超分辨率重構(gòu)圖像的無(wú)參考質(zhì)量評(píng)估網(wǎng)絡(luò),為重構(gòu)網(wǎng)絡(luò)提供全新的質(zhì)量評(píng)估損失,進(jìn)一步提高重構(gòu)圖像的視覺(jué)效果。實(shí)驗(yàn)結(jié)果表明,同當(dāng)前先進(jìn)的同類方法比,該方法在多個(gè)數(shù)據(jù)集上具有更佳的重構(gòu)效果。由此表明,采用頻率分離思想的生成對(duì)抗網(wǎng)絡(luò)進(jìn)行超分辨率重構(gòu),可以有效利用圖像頻率成分,提高重構(gòu)效果。
-
關(guān)鍵詞:
- 超分辨率 /
- 生成對(duì)抗網(wǎng)絡(luò) /
- 頻率分離 /
- 質(zhì)量評(píng)估 /
- 密集殘差
Abstract: With generative adversarial networks have attracted much attention because they provide new ideas for blind super-resolution reconstruction. Considering the problem that the existing methods do not fully consider the low-frequency retention characteristics during image degradation, but use the same processing method for high and low-frequency components, which lacks the effective use of frequency details and is difficult to obtain better reconstruction result, a frequency separation generative adversarial super-resolution reconstruction network based on dense residual and quality assessment is proposed. The idea of frequency separation is adopted by the network to process the high-frequency and low-frequency information of the image separately, so as to improve the ability of capturing high-frequency information and simplify the processing of low-frequency features. The base block in the generator is designed to integrate the spatial feature transformation layer into the dense wide activation residuals, which enhances the ability of deep feature representation while differentiating the local information. In addition, no-reference quality assessment network is designed specifically for super-resolution reconstructed images using Visual Geometry Group (VGG), which provides a new quality assessment loss for the reconstruction network and further improves the visual effect of reconstructed images. The experimental results show that the method has better reconstruction effect on multiple datasets than the current state-of-the-art similar methods. It is thus shown that super-resolution reconstruction using generative adversarial networks with the idea of frequency separation can effectively utilize the image frequency components and improve the reconstruction effect. -
表 1 不同方法各數(shù)據(jù)集的PSNR (dB)和SSIM均值比較(×4)
算法 Set5 Set14 BSDS100 Manga109 PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ SRGAN[11] 28.574 0.818 25.674 0.692 25.156 0.654 26.488 0.828 ESRGAN[12] 30.438 0.852 26.278 0.699 25.323 0.651 28.245 0.859 SFTGAN[14] 27.578 0.809 26.968 0.729 25.501 0.653 28.182 0.858 DSGAN[17] 30.392 0.854 26.644 0.714 25.447 0.655 27.965 0.853 SRCGAN[13] 28.068 0.789 26.071 0.696 25.659 0.657 25.295 0.796 FxSR[15] 30.637 0.849 26.708 0.719 26.144 0.684 27.647 0.844 SROOE[16] 30.862 0.866 27.231 0.731 26.195 0.687 27.852 0.849 WGSR[19] 30.373 0.851 27.023 0.727 26.372 0.684 28.287 0.861 本文 30.904 0.872 27.715 0.749 26.838 0.701 28.312 0.867 下載: 導(dǎo)出CSV
表 3 不同濾波器重構(gòu)效果的影響
濾波器 PSNR(dB)↑ SSIM↑ 無(wú) 28.831 0.835 鄰域平均 28.941 0.833 高斯差分 29.015 0.837 下載: 導(dǎo)出CSV
表 4 含有不同模塊對(duì)應(yīng)的PSNR (dB)和SSIM均值
分支結(jié)構(gòu) SFT層 質(zhì)量評(píng)估網(wǎng)絡(luò) PSNR (dB)↑ SSIM↑ $\surd $ $ \times $ $ \times $ 28.772 0.828 $ \times $ $\surd $ $ \times $ 28.402 0.821 $ \times $ $ \times $ $\surd $ 28.642 0.823 $\surd $ $\surd $ $\surd $ 29.015 0.837 下載: 導(dǎo)出CSV
表 5 不同損失函數(shù)的影響
損失
組合顏色損失 多層感知損失 對(duì)抗損失 FVSD損失 PSNR (dB)↑ SSIM↑ Lcol Lcol-1 Ladv Ladv-1 組合1 $ \times $ $\surd $ $\surd $ $ \times $ $\surd $ $ \times $ 28.352 0.818 組合2 $ \times $ $\surd $ $\surd $ $ \times $ $\surd $ $\surd $ 28.831 0.835 組合3 $\surd $ $ \times $ $\surd $ $\surd $ $ \times $ $ \times $ 28.437 0.821 本文 $\surd $ $ \times $ $\surd $ $\surd $ $ \times $ $\surd $ 29.015 0.837 下載: 導(dǎo)出CSV
-
[1] 蔡文郁, 張美燕, 吳巖, 等. 基于循環(huán)生成對(duì)抗網(wǎng)絡(luò)的超分辨率重建算法研究[J]. 電子與信息學(xué)報(bào), 2022, 44(1): 178–186. doi: 10.11999/JEIT201046.CAI Wenyu, ZHANG Meiyan, WU Yan, et al. Research on cyclic generation countermeasure network based super-resolution image reconstruction algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(1): 178–186. doi: 10.11999/JEIT201046. [2] ZHOU Chaowei and XIONG Aimin. Fast image super-resolution using particle swarm optimization-based convolutional neural networks[J]. Sensors, 2023, 23(4): 1923. doi: 10.3390/s23041923. [3] WU Zhijian, LIU Wenhui, LI Jun, et al. SFHN: Spatial-frequency domain hybrid network for image super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(11): 6459–6473. doi: 10.1109/TCSVT.2023.3271131. [4] 程德強(qiáng), 袁航, 錢建生, 等. 基于深層特征差異性網(wǎng)絡(luò)的圖像超分辨率算法[J]. 電子與信息學(xué)報(bào), 2024, 46(3): 1033–1042. doi: 10.11999/JEIT230179.CHENG Deqiang, YUAN Hang, QIAN Jiansheng, et al. Image super-resolution algorithms based on deep feature differentiation network[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1033–1042. doi: 10.11999/JEIT230179. [5] SAHARIA C, HO J, CHAN W, et al. Image super-resolution via iterative refinement[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4713–4726. doi: 10.1109/TPAMI.2022.3204461. [6] DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 184–199. doi: 10.1007/978-3-319-10593-2_13. [7] KIM J, LEE J K, and LEE K M. Accurate image super-resolution using very deep convolutional networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016. doi: 10.1109/CVPR.2016.182. [8] TONG Tong, LI Gen, LIU Xiejie, et al. Image super-resolution using dense skip connections[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4809–4817. doi: 10.1109/ICCV.2017.514. [9] LAN Rushi, SUN Long, LIU Zhenbing, et al. MADNet: A fast and lightweight network for single-image super resolution[J]. IEEE Transactions on Cybernetics, 2021, 51(3): 1443–1453. doi: 10.1109/TCYB.2020.2970104. [10] WEI Pengxu, XIE Ziwei, LU Hannan, et al. Component divide-and-conquer for real-world image super-resolution[C]. The 16th Europe Conference on Computer Vision, Glasgow, UK, 2020: 101–117. doi: 10.1007/978-3-030-58598-3_7. [11] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 105–114. doi: 10.1109/CVPR.2017.19. [12] WANG Xintao, YU Ke, WU Shixiang, et al. ESRGAN: Enhanced super-resolution generative adversarial networks[C]. The European Conference on Computer Vision, Munich, Germany, 2019: 63–79. doi: 10.1007/978-3-030-11021-5_5. [13] UMER R M, FORESTI G L, and MICHELONI C. Deep generative adversarial residual convolutional networks for real-world super-resolution[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, USA, 2020: 1769–1777. doi: 10.1109/CVPRW50498.2020.00227. [14] WANG Xintao, YU Ke, DONG Chao, et al. Recovering realistic texture in image super-resolution by deep spatial feature transform[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 606–615. doi: 10.1109/CVPR.2018.00070. [15] PARK S H, MOON Y S, and CHO N I. Flexible style image super-resolution using conditional objective[J]. IEEE Access, 2022, 10: 9774–9792. doi: 10.1109/ACCESS.2022.3144406. [16] PARK S H, MOON Y S, and CHO N I. Perception-oriented single image super-resolution using optimal objective estimation[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 1725–1735. doi: 10.1109/CVPR52729.2023.00172. [17] FRITSCHE M, GU Shuhang, and TIMOFTE R. Frequency separation for real-world super-resolution[C]. 2019 IEEE/CVF International Conference on Computer Vision Workshop, Seoul, Korea (South), 2019: 3599–3608. doi: 10.1109/ICCVW.2019.00445. [18] PRAJAPATI K, CHUDASAMA V, PATEL H, et al. Direct unsupervised super-resolution using generative adversarial network (DUS-GAN) for real-world data[J]. IEEE Transactions on Image Processing, 2021, 30: 8251–8264. doi: 10.1109/TIP.2021.3113783. [19] KORKMAZ C, TEKALP A M, and DOGAN Z. Training generative image super-resolution models by wavelet-domain losses enables better control of artifacts[C]. 2014 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 5926–5936. doi: 10.1109/CVPR52733.2024.00566. [20] MA Chao, YANG C Y, YANG Xiaokang, et al. Learning a no-reference quality metric for single-image super-resolution[J]. Computer Vision and Image Understanding, 2017, 158: 1–16. doi: 10.1016/j.cviu.2016.12.009. [21] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28. [22] YANG Jianchao, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861–2873. doi: 10.1109/TIP.2010.2050625. [23] ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. Deep plug-and-play super-resolution for arbitrary blur kernels[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019. doi: 10.1109/CVPR.2019.00177. [24] TIMOFTE R, AGUSTSSON E, VAN GOOL L, et al. NTIRE 2017 challenge on single image super-resolution: Methods and results[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 114–125. doi: 10.1109/CVPRW.2017.149. [25] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single image super-resolution based on nonnegative neighbor embedding[C]. The British Machine Vision Conference, 2012. doi: 10.5244/C.26.135. [26] ZEYDE R, ELAD M, and PROTTER M. On single image scale-up using sparse-representations[C]. The 7th International Conference on Curves and Surfaces, Avignon, France, 2012: 711–730. doi: 10.1007/978-3-642-27413-8_47. [27] ARBELáEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898–916. doi: 10.1109/tpami.2010.161. [28] MATSUI Y, ITO K, ARAMAKI Y, et al. Sketch-based manga retrieval using manga109 dataset[J]. Multimedia Tools and Applications, 2017, 76(20): 21811–21838. doi: 10.1007/s11042-016-4020-z. -