應(yīng)急場景無人機自組網(wǎng)部分重疊信道動態(tài)分配方法
doi: 10.11999/JEIT240377 cstr: 32379.14.JEIT240377
-
1.
中國礦業(yè)大學(xué)物聯(lián)網(wǎng)(感知礦山)研究中心 徐州 221008
-
2.
中國礦業(yè)大學(xué)信息與控制工程學(xué)院 徐州 221008
Partially Overlapping Channels Dynamic Allocation Method for UAV Ad-hoc Networks in Emergency Scenario
-
1.
IoT Perception Mine Research Center, China University of Mining and Technology, Xuzhou 221008, China
-
2.
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221008, China
-
摘要: 飛行自組網(wǎng)(FANETs)因具有高機動、自組織等特點,被廣泛應(yīng)用于應(yīng)急救援場景。在應(yīng)急場景中,大量用戶尋呼請求造成局部流量激增與有限頻譜資源之間產(chǎn)生難以協(xié)調(diào)的矛盾,F(xiàn)ANET中面臨嚴(yán)重的信道干擾問題,亟需將頻譜利用率高的部分重疊信道(POCs)擴展到應(yīng)急場景中。然而,POCs的鄰信道特性,導(dǎo)致干擾復(fù)雜難以刻畫。因此,該文研究了FANET部分重疊信道分配方法,通過幾何預(yù)測重構(gòu)時變干擾圖和無干擾最小信道間隔矩陣刻畫POCs干擾模型,在此基礎(chǔ)上提出一種基于上界置信區(qū)間的POCs動態(tài)分配算法(UCB-DAL),通過分布式?jīng)Q策求解近似最優(yōu)信道分配方案。仿真結(jié)果表明,該算法實現(xiàn)了網(wǎng)絡(luò)干擾和信道切換次數(shù)之間性能折中,具有較好的收斂性能。
-
關(guān)鍵詞:
- 應(yīng)急通信網(wǎng)絡(luò) /
- 無人機自組網(wǎng) /
- 資源分配 /
- 部分重疊信道
Abstract: The Flying Ad-hoc NETworks (FANETs) are widely used in emergency rescue scenarios due to their high mobility and self-organization advantages. In emergency scenarios, a large number of user paging requests lead to a challenging coordination between the surge in local traffic and the limited spectrum resources, significant channel interference issues in FANETs are resulted from. There is an urgent need to extend the high spectrum utilization advantage of Partially Overlapping Channels (POCs) to emergency scenarios. However, the adjacent channel characteristics of POCs leads to complex interference that is difficult to characterize. Therefore, partial overlapping channel allocation methods in FANETs are studied in this paper. By utilizing geometric prediction to reconstruct time-varying interference graphs and characterizing the POCs interference model with the interference-free minimum channel spacing matrix, a Dynamic Channel Allocation algorithm for POCs based on Upper Confidence Bounds (UCB-DCA) is proposed. This algorithm aims to solve for an approximately optimal channel allocation scheme through distributed decision-making. Simulation results demonstrate that the algorithm achieves a trade-off between network interference and channel switching times, and has good convergence performance. -
1 構(gòu)建干擾圖和無干擾最小信道間隔矩陣算法
輸入:節(jié)點進(jìn)行交互,獲取位置信息及建立通信鏈路的節(jié)點信息。 輸出:預(yù)測干擾圖GIN(t)和無干擾最小信道間隔矩陣K_C(t)。 (1) 初始化:干擾圖GIN(t)、矩陣K_C(t)。St(ui), Sr(uj)為節(jié)點
集合的子集。(2) for $ \forall $ui$\in $St(ui)do (3) for $ \forall $uj$\in $Sr(uj)do (4) if ui與uj建立通信對 then (5) 進(jìn)行下一次迭代; (6) end if (7) if ui與uj之間距離不大于預(yù)測干擾距離 (8) ui與uj之間存在干擾邊; (9) end if (10) 根據(jù)式(12)求出ui與uj預(yù)測的信道間隔δ; (11) end for (12) end for 下載: 導(dǎo)出CSV
2 UCB的部分重疊信道動態(tài)分配學(xué)習(xí)算法(UCB-DAL)
輸入:預(yù)測干擾圖GIN(t)及無干擾最小信道間隔矩陣K_C(t),
信道分配矩陣C_U(t–k–1)。輸出:信道分配方案C_U(t)。 (1) 初始化:所有玩家獲取獎勵R_M和累積獎勵C_M。
Sv(un)為節(jié)點集合,Sn(un)為un鄰居節(jié)點集合。(2) for epi =1:max_epi do (3) for $ \forall {u_n} \in {\text{Sv}}({u_n}) $do (4) 根據(jù)式(17)選取效益最大的動作; (5) for$ \forall {u_j} \in {\text{Sn}}({u_n}) $ do (6) if 玩家$ {u_n} $與鄰居節(jié)點$ {u_j} $的信道間隔大于等于無干擾
最小信道間隔then(7) 對玩家un當(dāng)前選擇動作給予獎勵并更新R_M和累積
獎勵C_M;(8) else (9) 對當(dāng)前動作根據(jù)式(18)給予懲罰并更新R_M和累積
獎勵C_M;(10) end if (11) 更新玩家un所選信道及信道矩陣C_U(t); (12) end for (13) end for (14) if 所有玩家都找到收益最大動作 then (15) 結(jié)束循環(huán); (16) end if (17) end for 下載: 導(dǎo)出CSV
-
[1] MU Junsheng, ZHANG Ronghui, CUI Yuanhao, et al. UAV meets integrated sensing and communication: Challenges and future directions[J]. IEEE Communications Magazine, 2023, 61(5): 62–67. doi: 10.1109/MCOM.008.2200510. [2] DAI Jun, HU Qunpeng, LIU Xu, et al. Cluster head selection method of multiple UAVs under COVID-19 situation[J]. Computer Communications, 2022, 196: 141–147. doi: 10.1016/j.comcom.2022.09.026. [3] CALAMONERI T, CORò F, and MANCINI S. A realistic model to support rescue operations after an earthquake via UAVs[J]. IEEE Access, 2022, 10: 6109–6125. doi: 10.1109/ACCESS.2022.3141216. [4] 國務(wù)院關(guān)于印發(fā)“十四五”國家應(yīng)急體系規(guī)劃的通知 國發(fā)〔2021〕36號[J]. 中華人民共和國國務(wù)院公報, 2022(6): 30–48.Circular of the state council on printing and issuing the plan for building the national emergency response system during the 14th Five-Year Plan period[J]. Gazette of the State Council of the People’s Republic of China, 2022(6): 30–48. [5] ZHAO Wei, NISHIYAMA H, FADLULLAH Z, et al. DAPA: Capacity optimization in wireless networks through a combined design of density of access points and partially overlapped channel allocation[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3715–3722. doi: 10.1109/TVT.2015.2437714. [6] 葉方, 孫雪, 李一兵. 基于改進(jìn)離散蝙蝠算法的無線Mesh網(wǎng)絡(luò)部分重疊信道分配[J]. 電子與信息學(xué)報, 2022, 44(12): 4265–4273. doi: 10.11999/JEIT211029.YE Fang, SUN Xue, and LI Yibing. Partial overlapped channel assignment for wireless mesh networks based on improved discrete bat algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4265–4273. doi: 10.11999/JEIT211029. [7] CHEN Jiaxin, XU Yuhua, WU Qihui, et al. Interference-aware online distributed channel selection for multicluster FANET: A potential game approach[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3792–3804. doi: 10.1109/TVT.2019.2902177. [8] DAI Minghui, LUAN T H, SU Zhou, et al. Joint channel allocation and data delivery for UAV-assisted cooperative transportation communications in post-disaster networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 16676–16689. doi: 10.1109/TITS.2022.3178789. [9] TANG Fengxiao, FADLULLAH Z M, KATO N, et al. AC-POCA: Anticoordination game based partially overlapping channels assignment in combined UAV and D2D-based networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1672–1683. doi: 10.1109/TVT.2017.2753280. [10] FAN Chaoqiong, LI Bin, HOU Jia, et al. Robust fuzzy learning for partially overlapping channels allocation in UAV communication networks[J]. IEEE Transactions on Mobile Computing, 2022, 21(4): 1388–1401. doi: 10.1109/TMC.2020.3023789. [11] FENG Zhenhua and YANG Yaling. How much improvement can we get from partially overlapped channels?[C]. 2008 IEEE Wireless Communications and Networking Conference, Las Vegas, USA, 2008: 2957–2962. doi: 10.1109/WCNC.2008.517. [12] FENG Zhenhua and YANG Yaling. Characterizing the impact of partially overlapped channel on the performance of wireless networks[C]. IEEE GLOBECOM 2008 – 2008 IEEE Global Telecommunications Conference, New Orleans, USA, 2008: 1–6. doi: 10.1109/GLOCOM.2008.ECP.958. [13] GHOSAL S and GHOSH S C. Channel assignment in mobile networks based on geometric prediction and random coloring[C]. 2015 IEEE 40th Conference on Local Computer Networks (LCN), Clearwater Beach, USA, 2015: 237–240. doi: 10.1109/LCN.2015.7366315. [14] 李興旺, 田志發(fā), 張建華, 等. IRS輔助NOMA網(wǎng)絡(luò)下隱蔽通信性能研究[J]. 中國科學(xué): 信息科學(xué), 2024, 54(6): 1502–1515. doi: 10.1360/SSI-2023-0174.LI Xingwang, TIAN Zhifa, ZHANG Jianhua, et al. Performance analysis of covert communication in IRS-assisted NOMA networks[J]. SCIENTIA SINICA Informationis, 2024, 54(6): 1502–1515. doi: 10.1360/SSI-2023-0174. [15] 李興旺, 王新瑩, 田心記, 等. 基于非理想條件可重構(gòu)智能超表面輔助無線攜能通信-非正交多址接入系統(tǒng)通感性能研究[J]. 電子與信息學(xué)報, 2024, 46(6): 2434–2442. doi: 10.11999/JEIT231395.LI Xingwang, WANG Xinying, TIAN Xinji, et al. Communication and sensing performance analysis of RIS-assisted SWIPT-NOMA system under non-ideal conditions[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2434–2442. doi: 10.11999/JEIT231395. [16] WANG Bowen, SUN Yanjing, SUN Zhi, et al. UAV-assisted emergency communications in social IoT: A dynamic hypergraph coloring approach[J]. IEEE Internet of Things Journal, 2020, 7(8): 7663–7677. doi: 10.1109/JIOT.2020.2988445. [17] BROYLES D and ABDUL J. Design and analysis of a 3-D Gauss-Markov model for highly dynamic airborne networks[C].The 46th Annual International Telemetering Conference and Technical Exhibition, San Diego, USA, 2010. [18] 薛建彬, 王海牛, 關(guān)向瑞, 等. 車載邊緣計算網(wǎng)絡(luò)中基于MAB的動態(tài)任務(wù)卸載方案研究[J]. 計算機科學(xué), 2023, 50(11A): 230200186–9. doi: 10.11896/jsjkx.230200186.XUE Jianbin, WANG Hainiu, GUAN Xiangrui, et al. Study on dynamic task offloading scheme based on MAB in vehicular edge computing network[J]. Computer Science, 2023, 50(11A): 230200186–9. doi: 10.11896/jsjkx.230200186. [19] KALATHIL D, NAYYAR N, and JAIN R. Decentralized learning for multiplayer multiarmed bandits[J]. IEEE Transactions on Information Theory, 2014, 60(4): 2331–2345. doi: 10.1109/TIT.2014.2302471. [20] ROSENSKI J, SHAMIR O, and SZLAK L. Multi-player bandits: A musical chairs approach[C]. The 33rd International Conference on International Conference on Machine Learning, New York, USA, 2016: 155–163. -