頻移Chirp信號短包的自適應(yīng)分數(shù)傅里葉變換檢測方法
doi: 10.11999/JEIT240370 cstr: 32379.14.JEIT240370
-
海軍工程大學(xué)電子工程學(xué)院 武漢 430033
基金項目: 國家自然科學(xué)基金(61871473),海軍工程大學(xué)自主研發(fā)計劃(2023503090)
Adaptive Fractional Fourier Transform Detection Method for Short Packets of Frequency-shifted Chirp Signal
-
School of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China
Funds: The National Natural Science Foundation of China (61871473), The Naval Engineering University’s Independent Research and Development Program Project (2023503090)
-
摘要: 為解決傳統(tǒng)分數(shù)傅里葉變換(FrFT)在檢測頻移Chirp信號時脈沖分散問題,該文提出一種自適應(yīng)FrFT的檢測方法。該方法基于短包的結(jié)構(gòu)模型以及Neyman-Pearson檢測模型,引出了借助評價函數(shù)和判定閾值對信號幀檢測的虛警概率和漏檢概率的分析方法。結(jié)合傳統(tǒng)FrFT對完整Chirp信號的脈沖特性,給出了對分數(shù)傅里葉積分算子的修正方案,推導(dǎo)出自適應(yīng)FrFT對頻移Chirp碼元的峰值分布函數(shù)。針對自適應(yīng)FrFT檢測過程存在搜索時移問題,分析了該情況下頻移Chirp碼元峰值大小及分布情況,證明了相比于傳統(tǒng)FrFT,自適應(yīng)FrFT檢測捕獲無前導(dǎo)短數(shù)據(jù)包的性能更加優(yōu)越。
-
關(guān)鍵詞:
- 短包 /
- 頻移Chirp信號 /
- 自適應(yīng)分數(shù)傅里葉變換 /
- 幀檢測性能
Abstract: To address the pulse dispersion issue in detecting frequency-shifted chirp signals with traditional Fractional Fourier Transform (FrFT), an adaptive FrFT detection method is proposed in this paper. Leveraging the structural model of short packets and the Neyman-Pearson detection model, an analytical method is derived to evaluate the false alarm probability and missed detection probability of signal frame detection using an evaluation function and a decision threshold. Incorporating the pulse characteristics of traditional FrFT for complete chirp signals, a correction scheme for the fractional Fourier integral operator is proposed, and the peak distribution function of the frequency-shifted chirp symbol is derived for the adaptive FrFT. Addressing the search time shift issue in the adaptive FrFT detection process, the peak size and distribution of the frequency-shifted chirp symbol are analyzed, and the superiority of the adaptive FrFT detection compared to traditional FrFT is demonstrated. -
表 1 頻移調(diào)制技術(shù)調(diào)制原理
頻移量 碼元表示 頻移段排列狀態(tài) 0 P0 {s1, s2, s3,···, sq–2, sq–1, sq} 1 P1 {sq, s1, s2, s3,···, sq–2, sq–1} 2 P2 {sq–1, sq, s1, s2, s3,···, sq–2} $\vdots $ $\vdots $ $\vdots $ q–2 Pq–2 {s3,…, sq–2, sq–1, sq, s1, s2} q–1 Pq–1 {s2, s3,···, sq–2, sq–1, sq, s1} 下載: 導(dǎo)出CSV
表 2 系統(tǒng)仿真參數(shù)設(shè)定
參數(shù)名稱 符號表示 參數(shù)取值 信號幀長度 N 64 擴頻因子 SF 6 循環(huán)段數(shù) q 64 循環(huán)段數(shù)持續(xù)時間 Tc 10 ms Chirp碼元持續(xù)時間 Ts 640 ms 初始頻率 f0 50 Hz 離散調(diào)頻率 $\mu $ 1 帶寬 Bs 100 Hz 采樣率 fs 100 Hz 下載: 導(dǎo)出CSV
-
[1] NOURA M, ATIQUZZAMAN M, and GAEDKE M. Interoperability in internet of things: Taxonomies and open challenges[J]. Mobile Networks and Applications, 2019, 24(3): 796–809. doi: 10.1007/s11036-018-1089-9. [2] SOBIN C C. A survey on architecture, protocols and challenges in IoT[J]. Wireless Personal Communications, 2020, 112(3): 1383–1429. doi: 10.1007/s11277-020-07108-5. [3] SON P N, DUY T T, TUAN P V, et al. Short packet communication in underlay cognitive network assisted by an intelligent reflecting surface[J]. ETRI Journal, 2023, 45(1): 28–44. doi: 10.4218/ETRIJ.2021-0435. [4] HUANG Lei, ZHAO Xiaoyu, CHEN Wei, et al. Low-latency short-packet transmission over a large spatial scale[J]. Entropy, 2021, 23(7): 916. doi: 10.3390/E23070916. [5] LU Xingbo, YANG Weiwei, and YAN Shihao. Short-packet covert communication with transmission time uncertainty[C]. 2022 7th International Conference on Computer and Communication Systems (ICCCS), Wuhan, China, 2022: 628–632. doi: 10.1109/ICCCS55155.2022.9846514. [6] ZHANG Yanfeng, ZHU Xu, LIU Yujie, et al. Sparse superimposed vector transmission for short-packet high-mobility communication[J]. IEEE Wireless Communications Letters, 2023, 12(11): 1961–1965. doi: 10.1109/LWC.2023.3303234. [7] 韓書君, 呂素玉, 許曉東, 等. RIS輔助的短包通信系統(tǒng)時延與安全性能分析[J]. 北京郵電大學(xué)學(xué)報, 2022, 45(6): 68–74. doi: 10.13190/j.jbupt.2022-131.HAN Shujun, LYU Suyu, XU Xiaodong, et al. Delay and security performance analysis in RIS assisted short packet communication system[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(6): 68–74. doi: 10.13190/j.jbupt.2022-131. [8] DURISI G, KOCH T, and POPOVSKI P. Toward massive, ultrareliable, and low-latency wireless communication with short packets[J]. Proceedings of the IEEE, 2016, 104(9): 1711–1726. doi: 10.1109/JPROC.2016.2537298. [9] MOOUSAEI M and SMIDA B. Optimizing pilot overhead for ultra-reliable short-packet transmission[C]. 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017: 1–5. doi: 10.1109/ICC.2017.7996416. [10] 甘泉. LoRa物聯(lián)網(wǎng)通信技術(shù)[M]. 北京: 清華大學(xué)出版社, 2021: 95–96.GAN Quan. LoRa IoT Communication Technology[M]. Beijing, China: Tsinghua University Press, 2021: 95–96. [11] KO? A. Operator theory-based discrete fractional Fourier transform[J]. Signal, Image and Video Processing, 2019, 13(7): 1461–1468. doi: 10.1007/s11760-019-01553-x. [12] ALMEIDA L B. The fractional Fourier transform and time-frequency representations[J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3084–3091. doi: 10.1109/78.330368. [13] GRETINGER M, SECARA M, FESTILA C, et al. “Chirp” signal generators for frequency response experiments[C]. 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 2014: 1–4. doi: 10.1109/AQTR.2014.6857860. [14] 李詩銘. Chirp-BOK及多址通信技術(shù)研究[D]. [碩士論文], 哈爾濱工程大學(xué), 2019.LI Shiming. The study of Chirp-BOK and its multiple access communication technologies[D]. [Master dissertation], Harbin Engineering University, 2019. [15] 王明. 基于Chirp超寬帶通信技術(shù)的研究與實現(xiàn)[D]. [碩士論文], 電子科技大學(xué), 2010.WANG Ming. Research and implementation of Chirp ultra-wideband communication technology[D]. [Master dissertation], University of Electronic Science and Technology of China, 2010. [16] YU Linchen, CAO Jigang, CHEN Mianlong, et al. Key frame extraction scheme based on sliding window and features[J]. Peer-to-Peer Networking and Applications, 2018, 11(5): 1141–1152. doi: 10.1007/s12083-017-0567-3. [17] CHAUVAT R, GARCIA-PENA A, and PAONNI M. Efficient LDPC-coded CCSK links for robust high data rates GNSS[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(1): 404–417. doi: 10.1109/TAES.2022.3190819. [18] SAIED K, GHOUWAYEL A C A, and BOUTILLON E. Short frame transmission at very low SNR by associating CCSK modulation with NB-Code[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7194–7206. doi: 10.1109/TWC.2022.3156628. [19] DILLARD G M, REUTER M, ZEIDDLER J, et al. Cyclic code shift keying: a low probability of intercept communication technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 786–798. doi: 10.1109/TAES.2003.1238736. [20] KASSEM S. Quasi-cyclic short packet (QCSP) transmission for IoT[D]. Université Bretagne Sud, 2022. [21] 岳佳. 基于頻移Chirp調(diào)制的通信信號抗截獲波形設(shè)計[D]. [碩士論文], 哈爾濱工業(yè)大學(xué), 2021.YUE Jia. Anti-interception waveform design of communication signal based on frequency shift chirp modulation[D]. [Master dissertation], Harbin Institute of Technology, 2021. [22] 東錦鵬, 陳世文, 楊錦程, 等. 基于FRFT的低信噪比LFM信號參數(shù)快速估計算法[J]. 指揮控制與仿真, 2024, 46(1): 71–77. doi: 10.3969/j.issn.1673-3819.2024.01.009.DONG Jinpeng, CHEN Shiwen, YANG Jincheng, et al. A fast parameter estimation algorithm for LFM signal under low SNR based on FRFT[J]. Command, Control & Simulation, 2024, 46(1): 71–77. doi: 10.3969/j.issn.1673-3819.2024.01.009. [23] 杜欣宜. 基于FRFT頻移Chirp調(diào)制的物理層安全信號設(shè)計[D]. [碩士論文], 哈爾濱工業(yè)大學(xué), 2023.DU Xinyi. Physical layer security signal design of frequency shift Chirp modulation based on FRFT[D]. [Master dissertation], Harbin Institute of Technology, 2023. -