針對(duì)組網(wǎng)雷達(dá)的無人機(jī)集群航跡欺騙綜合誤差分析
doi: 10.11999/JEIT240289 cstr: 32379.14.JEIT240289
-
1.
南京航空航天大學(xué)雷達(dá)成像與微波光子技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室 南京 210016
-
2.
電磁空間認(rèn)知與智能控制技術(shù)實(shí)驗(yàn)室 北京 100191
Comprehensive Error in UAV Cluster Trajectory Deception for Networked Radar
-
1.
Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
-
2.
Laboratory of Electromagnetic Space Cognition and Intelligent Control, Beijing 100191, China
-
摘要: 無人機(jī)集群在對(duì)組網(wǎng)雷達(dá)進(jìn)行航跡欺騙過程中通過延時(shí)轉(zhuǎn)發(fā)截獲的雷達(dá)信號(hào)生成虛假目標(biāo)點(diǎn),而雷達(dá)站址誤差、無人機(jī)抖動(dòng)誤差及轉(zhuǎn)發(fā)時(shí)延誤差均會(huì)造成虛假目標(biāo)點(diǎn)偏離預(yù)設(shè)位置,進(jìn)而使航跡欺騙效果惡化。針對(duì)上述問題,該文在雷達(dá)量測(cè)位置、無人機(jī)預(yù)設(shè)位置和欺騙距離已知以及組網(wǎng)雷達(dá)空間分辨單元(SRC)一定的情況下,分析了雷達(dá)站址誤差、無人機(jī)抖動(dòng)誤差及轉(zhuǎn)發(fā)時(shí)延誤差同時(shí)存在時(shí)無人機(jī)集群成功欺騙組網(wǎng)雷達(dá)的邊界條件,并總結(jié)了上述誤差對(duì)航跡欺騙效果的影響規(guī)律。數(shù)值仿真結(jié)果表明,當(dāng)3種誤差同時(shí)存在時(shí),推導(dǎo)結(jié)果可以有效評(píng)估無人機(jī)集群對(duì)組網(wǎng)雷達(dá)的欺騙能力。
-
關(guān)鍵詞:
- 航跡欺騙 /
- 組網(wǎng)雷達(dá) /
- 無人機(jī)集群 /
- 誤差分析
Abstract: In the process of trajectory deception against the networked radar using an Unmanned Aerial Vehicle (UAV) cluster, false target points are generated by delaying and forwarding intercepted radar signals. Errors such as radar station location errors, UAV jitter errors, and forwarding delay errors can all cause these false target points to deviate from their intended positions, thereby degrading the effectiveness of the deception. Considering known radar measurement positions, UAV preset positions, deception distances, and a specific Space Resolution Cell (SRC) of the networked radar, the boundary condition of successfully deceiving networked radar by a UAV cluster is analyzed in this paper. The impact patterns of these errors on deception effectiveness are also summarized in the paper. The numerical simulation results show that when all three kinds of errors are present, the derived results can effectively evaluate the deception ability of the UAV cluster to the networked radar.-
Key words:
- Trajectory deception /
- Networked radar /
- UAV cluster /
- Error analysis
-
表 1 坐標(biāo)參數(shù)設(shè)置
名稱 位置(km) 雷達(dá)R1 (0.00,0.00,0.00) 雷達(dá)R2 (8.00,6.00,0.00) 雷達(dá)R3 (14.00,20.00,0.00) 無人機(jī)A1 (4.25,10.20,17.00) 無人機(jī)A2 (5.75,10.50,15.00) 無人機(jī)A3 (8.15,14.80,13.00) 虛假目標(biāo)點(diǎn)C (5.00,12.00,20.00) 下載: 導(dǎo)出CSV
表 2 組網(wǎng)雷達(dá)誤差和最小分辨率計(jì)算表
雷達(dá)站址誤差(m) 無人機(jī)抖動(dòng)誤差(m) 轉(zhuǎn)發(fā)時(shí)延誤差(μs) 最小分辨率(m) $ {e_{r1}} \le 4\;250.0 $ $ {e_{j1}} = 0.0 $ $ {e_{t1}} = 0.0 $ $ {\delta _{\min }} = 1\;500.0 $ $ {e_{r2}} \le 2\;250.0 $ $ {e_{j2}} = 0.0 $ $ {e_{t2}} = 0.0 $ $ {e_{r3}} \le 1\;392.9 $ $ {e_{j3}} = 0.0 $ $ {e_{t3}} = 0.0 $ $ {e_{r1}} = 0.0 $ $ {e_{j1}} \le 637.5 $ $ {e_{t1}} = 0.0 $ $ {\delta _{\min }} = 1\;500.0 $ $ {e_{r2}} = 0.0 $ $ {e_{j2}} \le 562.5 $ $ {e_{t2}} = 0.0 $ $ {e_{r3}} = 0.0 $ $ {e_{j3}} \le 487.5 $ $ {e_{t3}} = 0.0 $ $ {e_{r1}} = 0.0 $ $ {e_{j1}} = 0.0 $ $ {e_{t1}} \le 5.0 $ $ {\delta _{\min }} = 1\;500.0 $ $ {e_{r2}} = 0.0 $ $ {e_{j2}} = 0.0 $ $ {e_{t2}} \le 5.0 $ $ {e_{r3}} = 0.0 $ $ {e_{j3}} = 0.0 $ $ {e_{t3}} \le 5.0 $ $ {e_{r1}} \le 700.0 $ $ {e_{j1}} = 150.0 $ $ {e_{t1}} = 3.0 $ $ {\delta _{\min }} = 1\;500.0 $ $ {e_{r2}} \le 725.0 $ $ {e_{j2}} = 100.0 $ $ {e_{t2}} = 2.5 $ $ {e_{r3}} \le 692.9 $ $ {e_{j3}} = 50.0 $ $ {e_{t3}} = 2.0 $ $ {e_{r1}} = 1\;200.0 $ $ {e_{j1}} \le 75.0 $ $ {e_{t1}} = 3.0 $ $ {\delta _{\min }} = 1\;500.0 $ $ {e_{r2}} = 800.0 $ $ {e_{j2}} \le 81.3 $ $ {e_{t2}} = 2.5 $ $ {e_{r3}} = 600.0 $ $ {e_{j3}} \le 82.5 $ $ {e_{t3}} = 2.0 $ $ {e_{r1}} = 1\;200.0 $ $ {e_{j1}} = 150.0 $ $ {e_{t1}} \le 2.4 $ $ {\delta _{\min }} = 1\;500.0 $ $ {e_{r2}} = 800.0 $ $ {e_{j2}} = 100.0 $ $ {e_{t2}} \le 2.3 $ $ {e_{r3}} = 600.0 $ $ {e_{j3}} = 50.0 $ $ {e_{t3}} \le 2.3 $ $ {e_{r1}} = 1\;200.0 $ $ {e_{j1}} = 150.0 $ $ {e_{t1}} = 3.0 $ $ {\delta _{\min }} \ge 1\;400.0 $ $ {e_{r2}} = 800.0 $ $ {e_{j2}} = 100.0 $ $ {e_{t2}} = 2.5 $ $ {e_{r3}} = 600.0 $ $ {e_{j3}} = 50.0 $ $ {e_{t3}} = 2.0 $ 下載: 導(dǎo)出CSV
-
[1] 蘭俊杰, 陳蓓, 徐廷新. 組網(wǎng)雷達(dá)發(fā)展現(xiàn)狀及其干擾技術(shù)[J]. 飛航導(dǎo)彈, 2009(12): 39–41. doi: 10.16338/j.issn.1009-1319.2009.12.019.LAN Junjie, CHEN Bei, and XU Tingxin. Development status and interference techniques of netted radar[J]. Aerodynamic Missile Journal, 2009(12): 39–41. doi: 10.16338/j.issn.1009-1319.2009.12.019. [2] 張養(yǎng)瑞. 對(duì)雷達(dá)網(wǎng)的多機(jī)伴隨式協(xié)同干擾技術(shù)研究[D]. [博士論文], 北京理工大學(xué), 2015.ZHANG Yangrui. Research on key technologies of cooperative ECM in multi-syndrome jammers for countering radar net[D]. [Ph. D. dissertation], Beijing Institute of Technology, 2015. [3] 任鑫. 基于多無人機(jī)的組網(wǎng)雷達(dá)欺騙干擾技術(shù)研究[D]. [碩士論文], 電子科技大學(xué), 2023. doi: 10.27005/d.cnki.gdzku.2023.001268.REN Xin. Research on deception of radar network using multiple electronic combat air vehicles[D]. [Master dissertation], University of Electronic Science and Technology of China, 2023. doi: 10.27005/d.cnki.gdzku.2023.001268. [4] 呂炫. 面向雷達(dá)網(wǎng)的無人載體協(xié)同干擾策略與技術(shù)研究[D]. [碩士論文], 電子科技大學(xué), 2023. doi: 10.27005/d.cnki.gdzku.2023.002594.LV Xuan. Research on unmanned carrier cooperative jamming strategy and technology for radar network[D]. [Master dissertation], University of Electronic Science and Technology of China, 2023. doi: 10.27005/d.cnki.gdzku.2023.002594. [5] 郭文元. 針對(duì)組網(wǎng)雷達(dá)的協(xié)同干擾技術(shù)研究[D]. [碩士論文], 哈爾濱工程大學(xué), 2021. doi: 10.27060/d.cnki.ghbcu.2021.000764.GUO Wenyuan. Research on cooperative jamming technology for netted radar[D]. [Master dissertation], Harbin Engineering University, 2021. doi: 10.27060/d.cnki.ghbcu.2021.000764. [6] 陳保亮. 多無人機(jī)對(duì)組網(wǎng)雷達(dá)系統(tǒng)的航跡欺騙干擾研究[J]. 艦船電子工程, 2019, 39(11): 89–92,166. doi: 10.3969/j.issn.1672-9730.2019.11.022.CHEN Baoliang. Research on multi-UAVs track deception jamming against network radar system[J]. Ship Electronic Engineering, 2019, 39(11): 89–92,166. doi: 10.3969/j.issn.1672-9730.2019.11.022. [7] FAN Zhe, GAO Xiaojing, JIN Yi, et al. Research on route planning of group UAV cooperation for deception jamming to radar network[C]. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 2020: 1966–1969. doi: 10.1109/ITNEC48623.2020.9085199. [8] 丁宸聰, 葉紫晴. 基于改進(jìn)鯨魚算法的多無人機(jī)協(xié)同欺騙干擾技術(shù)[J]. 電訊技術(shù), 2024, 64(1): 67–73. doi: 10.20079/j.issn.1001-893x.230213002.DING Chencong and YE Ziqing. Multi-UAV cooperative deception jamming technology based on improved whale optimization algorithm[J]. Telecommunication Engineering, 2024, 64(1): 67–73. doi: 10.20079/j.issn.1001-893x.230213002. [9] 劉宇蕊, 陳云陽, 余鑫. 基于改進(jìn)粒子群優(yōu)化算法的多無人機(jī)協(xié)同欺騙干擾技術(shù)[J]. 艦船電子對(duì)抗, 2024, 47(1): 72–76. doi: 10.16426/j.cnki.jcdzdk.2024.01.012.LIU Yurui, CHEN Yunyang, and YU Xin. Multi-UAV cooperative deception jamming technology based on improved particle swarm optimization algorithm[J]. Shipboard Electronic Countermeasure, 2024, 47(1): 72–76. doi: 10.16426/j.cnki.jcdzdk.2024.01.012. [10] 李松, 李佳琦, 王博文, 等. 無人機(jī)輔助空中計(jì)算的軌跡和功率聯(lián)合優(yōu)化方法[J]. 電子與信息學(xué)報(bào), 2024, 46(6): 2480–2487. doi: 10.11999/JEIT230917.LI Song, LI Jiaqi, WANG Bowen, et al. A joint optimization method for trajectory and power of unmanned aerial vehicle assisted over-the-air computation[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2480–2487. doi: 10.11999/JEIT230917. [11] 趙艷麗, 李宏, 杜嘉薇, 等. 對(duì)空間探測(cè)雷達(dá)網(wǎng)的多機(jī)協(xié)同航跡欺騙干擾方法[J]. 電子與信息學(xué)報(bào), 2023, 45(2): 585–591. doi: 10.11999/JEIT211575.ZHAO Yanli, LI Hong, DU Jiawei, et al. Multi-jammer cooperation track deception jamming method against space detection radar network[J]. Journal of Electronics & Information Technology, 2023, 45(2): 585–591. doi: 10.11999/JEIT211575. [12] 張磊, 羅迎, 張群. 雷達(dá)組網(wǎng)系統(tǒng)對(duì)抗有源干擾方法綜述[J]. 信息對(duì)抗技術(shù), 2023, 2(6): 1–16. doi: 10.12399/j.issn.2097-163x.2023.06.001.ZHANG Lei, LUO Ying, and ZHANG Qun. Review of countermeasures against active jamming for radar network[J]. Information Countermeasure Technology, 2023, 2(6): 1–16. doi: 10.12399/j.issn.2097-163x.2023.06.001. [13] 時(shí)晨光, 聞雯, 宋海偉, 等. 針對(duì)組網(wǎng)雷達(dá)的無人機(jī)集群轉(zhuǎn)發(fā)式欺騙干擾時(shí)延誤差研究[J]. 航空兵器, 2024, 31(2): 131–137. doi: 10.12132/ISSN.1673-5048.2023.0143.SHI Chenguang, WEN Wen, SONG Haiwei, et al. Research on delay error of UAV swarm repeater deception jamming against networked radar[J]. Aero Weaponry, 2024, 31(2): 131–137. doi: 10.12132/ISSN.1673-5048.2023.0143. [14] LIU Xiang and LI Dongsheng. A three-dimensional phantom track generation for radar network deception (January 2019)[J]. IEEE Access, 2019, 7: 27288–27301. doi: 10.1109/ACCESS.2019.2894409. [15] 王國宏, 楊忠, 吳健平. 雷達(dá)站站址誤差對(duì)多機(jī)協(xié)同航跡欺騙干擾的影響分析[J]. 海軍航空工程學(xué)院學(xué)報(bào), 2015, 30(6): 501–504,510. doi: 10.7682/j.issn.1673-1522.2015.06.001.WANG Guohong, YANG Zhong, and WU Jianping. Influence analysis of radar location error on multi-aircraft cooperative track deception[J]. Journal of Naval Aeronautical and Astronautical University, 2015, 30(6): 501–504,510. doi: 10.7682/j.issn.1673-1522.2015.06.001. [16] 柏鵬, 王玉冰, 梁曉龍, 等. 無人機(jī)對(duì)雷達(dá)組網(wǎng)航跡欺騙綜述[J]. 航空學(xué)報(bào), 2020, 41(10): 23912.BAI Peng, WANG Yubing, LIANG Xiaolong, et al. Phantom track deception against radar networks using UAVs: Review[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 23912. -