一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

不完美信道狀態(tài)信息下的多輸入單輸出共生無(wú)線電系統(tǒng)資源分配算法

徐勇軍 王名揚(yáng) 田秦語(yǔ) 張海波 薛青

徐勇軍, 王名揚(yáng), 田秦語(yǔ), 張海波, 薛青. 不完美信道狀態(tài)信息下的多輸入單輸出共生無(wú)線電系統(tǒng)資源分配算法[J]. 電子與信息學(xué)報(bào), 2024, 46(12): 4354-4362. doi: 10.11999/JEIT231366
引用本文: 徐勇軍, 王名揚(yáng), 田秦語(yǔ), 張海波, 薛青. 不完美信道狀態(tài)信息下的多輸入單輸出共生無(wú)線電系統(tǒng)資源分配算法[J]. 電子與信息學(xué)報(bào), 2024, 46(12): 4354-4362. doi: 10.11999/JEIT231366
XU Yongjun, WANG Mingyang, TIAN Qinyu, ZHANG Haibo, XUE Qing. Resource Allocation Algorithm for Multiple-Input Single-Output Symbiotic Radio with Imperfect Channel State Information[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4354-4362. doi: 10.11999/JEIT231366
Citation: XU Yongjun, WANG Mingyang, TIAN Qinyu, ZHANG Haibo, XUE Qing. Resource Allocation Algorithm for Multiple-Input Single-Output Symbiotic Radio with Imperfect Channel State Information[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4354-4362. doi: 10.11999/JEIT231366

不完美信道狀態(tài)信息下的多輸入單輸出共生無(wú)線電系統(tǒng)資源分配算法

doi: 10.11999/JEIT231366 cstr: 32379.14.JEIT231366
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(U23A20279, 62271094),重慶市自然科學(xué)基金重點(diǎn)項(xiàng)目(CSTB2022NSCQ-LZX0009, CSTB2023NSCQ-LZX0079),重慶市教委科技重點(diǎn)項(xiàng)目(KJZD-K202200601),重慶郵電大學(xué)高等科學(xué)研究院項(xiàng)目(E011A2022324)
詳細(xì)信息
    作者簡(jiǎn)介:

    徐勇軍:男,教授,博士生導(dǎo)師,研究方向?yàn)榉聪蛏⑸渫ㄐ拧⒅悄芊瓷涿?、資源分配等

    王名揚(yáng):女,碩士生,研究方向?yàn)楣采鸁o(wú)線電、資源分配等

    田秦語(yǔ):男,碩士生,研究方向?yàn)橹悄芊瓷涿?、共生無(wú)線電等

    張海波:男,副教授,研究方向?yàn)闊o(wú)線資源管理等

    薛青:女,講師,研究方向?yàn)楹撩撞ㄍㄐ诺?/p>

    通訊作者:

    徐勇軍 xuyj@cqupt.edu.cn

  • 11) 在不完美CSI下,由于共生系統(tǒng)的優(yōu)化,主次系統(tǒng)中都存在優(yōu)化變量和不完美CSI,同時(shí)需要保證每類用戶的最低速率,因此問(wèn)題求解難度較大。
  • 中圖分類號(hào): TN929.5

Resource Allocation Algorithm for Multiple-Input Single-Output Symbiotic Radio with Imperfect Channel State Information

Funds: The National Natural Science Foundation of China (U23A20279, 62271094), The Key Fund of Natural Science Foundation of Chongqing (CSTB2022NSCQ-LZX0009, CSTB2023NSCQ-LZX0079), The Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202200601), The Institute for Advanced Sciences, Chongqing University of Posts and Telecommunication (E011A2022324)
  • 摘要: 針對(duì)信道估計(jì)誤差會(huì)導(dǎo)致傳統(tǒng)最優(yōu)資源分配算法失效的問(wèn)題,該文提出一種基于不完美信道狀態(tài)信息(CSI)的多輸入單輸出(MISO)共生無(wú)線電系統(tǒng)魯棒資源分配算法。考慮每個(gè)用戶最小吞吐量約束、傳輸時(shí)間約束、基站最大發(fā)射功率約束和用戶反射系數(shù)約束,基于有界信道不確定性模型,建立了一個(gè)傳輸時(shí)間、波束成形向量和反射系數(shù)聯(lián)合優(yōu)化的魯棒吞吐量最大化資源分配問(wèn)題。利用拉格朗日對(duì)偶、變量替換和交替優(yōu)化方法將原問(wèn)題轉(zhuǎn)換成凸優(yōu)化問(wèn)題求解。仿真結(jié)果表明,與傳統(tǒng)非共生資源分配算法相比,所提算法的吞吐量提升11.7%,中斷概率減小5.31%。
  • 圖  1  系統(tǒng)模型

    圖  2  算法流程圖

    圖  3  本文算法的收斂性能

    圖  4  不同算法系統(tǒng)總吞吐量與天線數(shù)量的關(guān)系

    圖  5  不同算法系統(tǒng)總吞吐量與反向散射設(shè)備數(shù)量的關(guān)系

    圖  6  不同算法下系統(tǒng)總吞吐量與估計(jì)誤差上界的關(guān)系

    圖  7  不同算法下系統(tǒng)總吞吐量與最大發(fā)射功率門限的關(guān)系

    圖  8  不同算法下的中斷概率性能對(duì)比

    表  1  相關(guān)工作總結(jié)

    文獻(xiàn) 網(wǎng)絡(luò)類型 用戶數(shù) CSI 優(yōu)化變量 目標(biāo)函數(shù)
    傳輸時(shí)間 反射系數(shù) 波束成形
    [5] SISO SR 單用戶 完美 × × Max:加權(quán)和速率
    [6] MISO SR 單用戶 完美 × × Min:傳輸功率,Max:能效
    [7] MISO SR 多用戶 完美 × Max:能效
    [8] MISO NOMA-TDMA SR 多用戶 完美 × Max:最小吞吐量
    [9] MISO 全雙工+NOMA-TDMA SR 多用戶 完美 × Max:最小吞吐量
    [10] SISO RIS+SR 多用戶 完美 × × Max:能效
    [11] MISO RIS+SR 單用戶 完美 × Max:能效
    [12] MISO RIS+SR+NOMA 多用戶 完美 × × Max:資源效率
    [13] SISO RIS+UAV+SR 單用戶 完美 × × × Min:加權(quán)和誤碼率
    [14] MISO SR 多用戶 完美 × × Min: SNR
    [15] MISO SR+竊聽(tīng)者 單用戶 完美 × × Max:保密速率
    [16] MIMO RIS+SR 單用戶 完美 × × Min:傳輸功率
    [17] MISO RIS+SR 單用戶 不完美 × × Min:傳輸功率
    [18] MISO RIS+SR 單用戶 不完美 × Min:傳輸功率
    本文 MISO SR 多用戶 不完美 Max:吞吐量
    下載: 導(dǎo)出CSV

    1  基于迭代的魯棒吞吐量最大化算法

     初始化系統(tǒng)參數(shù):$K$, ${\delta ^2}$, $N$, $B$, $T$;初始化迭代次數(shù)$l = 0$;
     定義最大迭代次數(shù)${L_{\max }}$和收斂精度$\varpi $;
     (1) WHILE
      $ \left| {\displaystyle\sum\nolimits_{k = 1}^K {{{\left( {R_k^{\text{u}} + R_k^{\text}} \right)}^{(l)}}} - \displaystyle\sum\nolimits_{k = 1}^K {{{\left( {R_k^{\text{u}} + R_k^{\text}} \right)}^{(l - 1)}}} } \right| \ge \varpi $ 或
      $l \le {L_{\max }}$ DO
     (2) 設(shè)置迭代次數(shù)$l = l + 1$;
     (3) 固定$t_k^{(l - 1)}$和$\theta _k^{(l - 1)}$,根據(jù)式(26)計(jì)算${{{\boldsymbol{W}}}^{(l)}}$;若${{{\boldsymbol{W}}}^{(l)}}$的秩
       為1,則使用特征值分解法得到最優(yōu)解;若${{{\boldsymbol{W}}}^{(l)}}$的秩大于1,
       采用高斯隨機(jī)化方法得到近似解;
     (4) 固定${{{\boldsymbol{W}}}^{(l)}}$,根據(jù)式(32)求解$t_k^{(l)}$和$\theta _k^{(l)}$;
     (5) 更新吞吐量$ \displaystyle\sum\nolimits_{k = 1}^K {\left( {R_k^{\text{u}} + R_k^{\text}} \right)} $。
     (6) END WHILE
    下載: 導(dǎo)出CSV
  • [1] ZHANG Qianqian, LIANG Yingchang, YANG Hongchuan, et al. Mutualistic mechanism in symbiotic radios: When can the primary and secondary transmissions be mutually beneficial?[J]. IEEE Transactions on Wireless Communications, 2022, 21(10): 8036–8050. doi: 10.1109/TWC.2022.3163735.
    [2] HU Jinlin, LIANG Yingchang, and PEI Yiyang. Reconfigurable intelligent surface enhanced multi-user MISO symbiotic radio system[J]. IEEE Transactions on Communications, 2021, 69(4): 2359–2371. doi: 10.1109/TCOMM.2020.3047444.
    [3] 未來(lái)移動(dòng)通信論壇. 未來(lái)IMT通信系統(tǒng)頻譜研究白皮書(2024年)[R]. 2024.
    [4] LIANG Yingchang, ZHANG Qianqian, LARSSON E G, et al. Symbiotic radio: Cognitive backscattering communications for future wireless networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(4): 1242–1255. doi: 10.1109/TCCN.2020.3023139.
    [5] GUO Huayan, LIANG Yingchang, LONG Ruizhe, et al. Resource allocation for symbiotic radio system with fading channels[J]. IEEE Access, 2019, 7: 34333–34347. doi: 10.1109/ACCESS.2019.2904612.
    [6] CHU Zheng, HAO Wanming, XIAO Pei, et al. Resource allocations for symbiotic radio with finite blocklength backscatter link[J]. IEEE Internet of Things Journal, 2020, 7(9): 8192–8207. doi: 10.1109/JIOT.2020.2980928.
    [7] YANG Haohang, YE Yinghui, LIANG Kai, et al. Energy efficiency maximization for symbiotic radio networks with multiple backscatter devices[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1431–1444. doi: 10.1109/OJCOMS.2021.3090836.
    [8] ZHANG Ronghaixiang, KANG Xin, and LIANG Yingchang. Minimum throughput maximization for peer-assisted NOMA-plus-TDMA symbiotic radio networks[J]. IEEE Wireless Communications Letters, 2021, 10(9): 1847–1851. doi: 10.1109/LWC.2021.3083841.
    [9] LIAO Yating, YANG Gang, and LIANG Yingchang. Resource allocation in NOMA-enhanced full-duplex symbiotic radio networks[J]. IEEE Access, 2020, 8: 22709–22720. doi: 10.1109/ACCESS.2020.2967153.
    [10] LI Jing, LI Xin, BI Yanjun, et al. Energy-efficient joint resource allocation with reconfigurable intelligent surfaces in symbiotic radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(4): 1816–1827. doi: 10.1109/TCCN.2022.3188986.
    [11] ZHOU Chunyu, XU Yongjun, LI Dong, et al. Energy-efficient maximization for RIS-aided MISO symbiotic radio systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(10): 13689–13694. doi: 10.1109/TVT.2023.3274796.
    [12] WU Mingjiang, LEI Xianfu, ZHOU Xiangyun, et al. RIS-assisted energy- and spectrum-efficient symbiotic transmission in NOMA systems[J]. IEEE Transactions on Communications, 2023, 71(5): 2801–2815. doi: 10.1109/TCOMM.2023.3241355.
    [13] HUA Meng, YANG Luxi, WU Qingqing, et al. UAV-assisted intelligent reflecting surface symbiotic radio system[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5769–5785. doi: 10.1109/TWC.2021.3070014.
    [14] HAN Shiying, LIANG Yingchang, and SUN Guiling. The design and optimization of random code assisted Multi-BD symbiotic radio system[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 5159–5170. doi: 10.1109/TWC.2021.3065941.
    [15] AL-NAHARI A, J?NTTI R, ZHENG Gan, et al. Ergodic secrecy rate analysis and optimal power allocation for symbiotic radio networks[J]. IEEE Access, 2023, 11: 82327–82337. doi: 10.1109/ACCESS.2023.3301186.
    [16] ZHANG Qianqian, LIANG Yingchang, and POOR H V. Reconfigurable intelligent surface assisted MIMO symbiotic radio networks[J]. IEEE Transactions on Communications, 2021, 69(7): 4832–4846. doi: 10.1109/TCOMM.2021.3070043.
    [17] ZHOU Hu, KANG Xin, LIANG Yingchang, et al. Cooperative beamforming for reconfigurable intelligent surface-assisted symbiotic radios[J]. IEEE Transactions on Vehicular Technology, 2022, 71(11): 11677–11692. doi: 10.1109/TVT.2022.3190515.
    [18] 吳翠先, 周春宇, 徐勇軍, 等. 智能反射面輔助的多入單出共生無(wú)線電魯棒安全資源分配算法[J]. 電子與信息學(xué)報(bào), 2024, 46(4): 1203–1211. doi: 10.11999/JEIT230426.

    WU Cuixian, ZHOU Chunyu, XU Yongjun, et al. Robust secure resource allocation algorithm for multiple input single output symbiotic radio with reconfigurable intelligent surface assistance[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1203–1211. doi: 10.11999/JEIT230426.
    [19] 徐勇軍, 姜思巧, 王公仆, 等. 基于不完美CSI的認(rèn)知反向散射通信吞吐量最大化算法[J]. 電子與信息學(xué)報(bào), 2023, 45(7): 2325–2333. doi: 10.11999/JEIT221483.

    XU Yongjun, JIANG Siqiao, WANG Gongpu, et al. Throughput maximization algorithm for cognitive backscatter communication with imperfect CSI[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2325–2333. doi: 10.11999/JEIT221483.
    [20] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
    [21] WU Tuo, JIANG Miao, ZHANG Qi, et al. Beamforming design in multiple-input-multiple-output symbiotic radio backscatter systems[J]. IEEE Communications Letters, 2021, 25(6): 1949–1953. doi: 10.1109/LCOMM.2021.3060468.
    [22] HEIDARPOUR A R, ARDAKANI M, TELLAMBURA C, et al. Network-coded cooperative systems in cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 11011–11023. doi: 10.1109/TWC.2022.3188729.
  • 加載中
圖(8) / 表(2)
計(jì)量
  • 文章訪問(wèn)數(shù):  346
  • HTML全文瀏覽量:  128
  • PDF下載量:  83
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2023-12-11
  • 修回日期:  2024-11-22
  • 網(wǎng)絡(luò)出版日期:  2024-11-28
  • 刊出日期:  2024-12-01

目錄

    /

    返回文章
    返回