不完美信道狀態(tài)信息下的多輸入單輸出共生無(wú)線電系統(tǒng)資源分配算法
doi: 10.11999/JEIT231366 cstr: 32379.14.JEIT231366
-
重慶郵電大學(xué)通信與信息工程學(xué)院 重慶 400065
Resource Allocation Algorithm for Multiple-Input Single-Output Symbiotic Radio with Imperfect Channel State Information
-
School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
摘要: 針對(duì)信道估計(jì)誤差會(huì)導(dǎo)致傳統(tǒng)最優(yōu)資源分配算法失效的問(wèn)題,該文提出一種基于不完美信道狀態(tài)信息(CSI)的多輸入單輸出(MISO)共生無(wú)線電系統(tǒng)魯棒資源分配算法。考慮每個(gè)用戶最小吞吐量約束、傳輸時(shí)間約束、基站最大發(fā)射功率約束和用戶反射系數(shù)約束,基于有界信道不確定性模型,建立了一個(gè)傳輸時(shí)間、波束成形向量和反射系數(shù)聯(lián)合優(yōu)化的魯棒吞吐量最大化資源分配問(wèn)題。利用拉格朗日對(duì)偶、變量替換和交替優(yōu)化方法將原問(wèn)題轉(zhuǎn)換成凸優(yōu)化問(wèn)題求解。仿真結(jié)果表明,與傳統(tǒng)非共生資源分配算法相比,所提算法的吞吐量提升11.7%,中斷概率減小5.31%。Abstract: To overcome the effect of channel estimation errors on the ineffectiveness of conventional optimal resource allocation algorithms, a robust resource allocation algorithm with imperfect Channel State Information(CSI) is proposed in Multiple-Input Single-Output(MISO) symbiotic radio systems. Considering the constraints of the minimum throughput of users, transmission time, maximum transmit power of the base station, and the reflection coefficients of users, based on bounded channel uncertainties, a robust throughput-maximization resource allocation problem is formulated by jointly optimizing transmission time, beamforming vectors, and reflection coefficients. The original problem is transformed into a convex problem by applying the Lagrange dual theory, the variable substitution, and the alternating optimizing methods. Simulation results verified that the throughput of the proposed algorithm is improved by 11.7% and the outage probability is reduced by 5.31% by comparing it with the non-robust resource allocation algorithm.
-
Key words:
- Symbiotic Radio(SR) /
- Robust resource allocation /
- Throughput maximization
-
表 1 相關(guān)工作總結(jié)
文獻(xiàn) 網(wǎng)絡(luò)類型 用戶數(shù) CSI 優(yōu)化變量 目標(biāo)函數(shù) 傳輸時(shí)間 反射系數(shù) 波束成形 [5] SISO SR 單用戶 完美 × √ × Max:加權(quán)和速率 [6] MISO SR 單用戶 完美 × × √ Min:傳輸功率,Max:能效 [7] MISO SR 多用戶 完美 √ √ × Max:能效 [8] MISO NOMA-TDMA SR 多用戶 完美 √ √ × Max:最小吞吐量 [9] MISO 全雙工+NOMA-TDMA SR 多用戶 完美 √ √ × Max:最小吞吐量 [10] SISO RIS+SR 多用戶 完美 × √ × Max:能效 [11] MISO RIS+SR 單用戶 完美 × √ √ Max:能效 [12] MISO RIS+SR+NOMA 多用戶 完美 √ × × Max:資源效率 [13] SISO RIS+UAV+SR 單用戶 完美 × × × Min:加權(quán)和誤碼率 [14] MISO SR 多用戶 完美 × √ × Min: SNR [15] MISO SR+竊聽(tīng)者 單用戶 完美 × √ × Max:保密速率 [16] MIMO RIS+SR 單用戶 完美 × √ × Min:傳輸功率 [17] MISO RIS+SR 單用戶 不完美 × × √ Min:傳輸功率 [18] MISO RIS+SR 單用戶 不完美 × √ √ Min:傳輸功率 本文 MISO SR 多用戶 不完美 √ √ √ Max:吞吐量 下載: 導(dǎo)出CSV
1 基于迭代的魯棒吞吐量最大化算法
初始化系統(tǒng)參數(shù):$K$, ${\delta ^2}$, $N$, $B$, $T$;初始化迭代次數(shù)$l = 0$;
定義最大迭代次數(shù)${L_{\max }}$和收斂精度$\varpi $;(1) WHILE
$ \left| {\displaystyle\sum\nolimits_{k = 1}^K {{{\left( {R_k^{\text{u}} + R_k^{\text}} \right)}^{(l)}}} - \displaystyle\sum\nolimits_{k = 1}^K {{{\left( {R_k^{\text{u}} + R_k^{\text}} \right)}^{(l - 1)}}} } \right| \ge \varpi $ 或
$l \le {L_{\max }}$ DO(2) 設(shè)置迭代次數(shù)$l = l + 1$; (3) 固定$t_k^{(l - 1)}$和$\theta _k^{(l - 1)}$,根據(jù)式(26)計(jì)算${{{\boldsymbol{W}}}^{(l)}}$;若${{{\boldsymbol{W}}}^{(l)}}$的秩
為1,則使用特征值分解法得到最優(yōu)解;若${{{\boldsymbol{W}}}^{(l)}}$的秩大于1,
采用高斯隨機(jī)化方法得到近似解;(4) 固定${{{\boldsymbol{W}}}^{(l)}}$,根據(jù)式(32)求解$t_k^{(l)}$和$\theta _k^{(l)}$; (5) 更新吞吐量$ \displaystyle\sum\nolimits_{k = 1}^K {\left( {R_k^{\text{u}} + R_k^{\text}} \right)} $。 (6) END WHILE 下載: 導(dǎo)出CSV
-
[1] ZHANG Qianqian, LIANG Yingchang, YANG Hongchuan, et al. Mutualistic mechanism in symbiotic radios: When can the primary and secondary transmissions be mutually beneficial?[J]. IEEE Transactions on Wireless Communications, 2022, 21(10): 8036–8050. doi: 10.1109/TWC.2022.3163735. [2] HU Jinlin, LIANG Yingchang, and PEI Yiyang. Reconfigurable intelligent surface enhanced multi-user MISO symbiotic radio system[J]. IEEE Transactions on Communications, 2021, 69(4): 2359–2371. doi: 10.1109/TCOMM.2020.3047444. [3] 未來(lái)移動(dòng)通信論壇. 未來(lái)IMT通信系統(tǒng)頻譜研究白皮書(2024年)[R]. 2024. [4] LIANG Yingchang, ZHANG Qianqian, LARSSON E G, et al. Symbiotic radio: Cognitive backscattering communications for future wireless networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(4): 1242–1255. doi: 10.1109/TCCN.2020.3023139. [5] GUO Huayan, LIANG Yingchang, LONG Ruizhe, et al. Resource allocation for symbiotic radio system with fading channels[J]. IEEE Access, 2019, 7: 34333–34347. doi: 10.1109/ACCESS.2019.2904612. [6] CHU Zheng, HAO Wanming, XIAO Pei, et al. Resource allocations for symbiotic radio with finite blocklength backscatter link[J]. IEEE Internet of Things Journal, 2020, 7(9): 8192–8207. doi: 10.1109/JIOT.2020.2980928. [7] YANG Haohang, YE Yinghui, LIANG Kai, et al. Energy efficiency maximization for symbiotic radio networks with multiple backscatter devices[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1431–1444. doi: 10.1109/OJCOMS.2021.3090836. [8] ZHANG Ronghaixiang, KANG Xin, and LIANG Yingchang. Minimum throughput maximization for peer-assisted NOMA-plus-TDMA symbiotic radio networks[J]. IEEE Wireless Communications Letters, 2021, 10(9): 1847–1851. doi: 10.1109/LWC.2021.3083841. [9] LIAO Yating, YANG Gang, and LIANG Yingchang. Resource allocation in NOMA-enhanced full-duplex symbiotic radio networks[J]. IEEE Access, 2020, 8: 22709–22720. doi: 10.1109/ACCESS.2020.2967153. [10] LI Jing, LI Xin, BI Yanjun, et al. Energy-efficient joint resource allocation with reconfigurable intelligent surfaces in symbiotic radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(4): 1816–1827. doi: 10.1109/TCCN.2022.3188986. [11] ZHOU Chunyu, XU Yongjun, LI Dong, et al. Energy-efficient maximization for RIS-aided MISO symbiotic radio systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(10): 13689–13694. doi: 10.1109/TVT.2023.3274796. [12] WU Mingjiang, LEI Xianfu, ZHOU Xiangyun, et al. RIS-assisted energy- and spectrum-efficient symbiotic transmission in NOMA systems[J]. IEEE Transactions on Communications, 2023, 71(5): 2801–2815. doi: 10.1109/TCOMM.2023.3241355. [13] HUA Meng, YANG Luxi, WU Qingqing, et al. UAV-assisted intelligent reflecting surface symbiotic radio system[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5769–5785. doi: 10.1109/TWC.2021.3070014. [14] HAN Shiying, LIANG Yingchang, and SUN Guiling. The design and optimization of random code assisted Multi-BD symbiotic radio system[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 5159–5170. doi: 10.1109/TWC.2021.3065941. [15] AL-NAHARI A, J?NTTI R, ZHENG Gan, et al. Ergodic secrecy rate analysis and optimal power allocation for symbiotic radio networks[J]. IEEE Access, 2023, 11: 82327–82337. doi: 10.1109/ACCESS.2023.3301186. [16] ZHANG Qianqian, LIANG Yingchang, and POOR H V. Reconfigurable intelligent surface assisted MIMO symbiotic radio networks[J]. IEEE Transactions on Communications, 2021, 69(7): 4832–4846. doi: 10.1109/TCOMM.2021.3070043. [17] ZHOU Hu, KANG Xin, LIANG Yingchang, et al. Cooperative beamforming for reconfigurable intelligent surface-assisted symbiotic radios[J]. IEEE Transactions on Vehicular Technology, 2022, 71(11): 11677–11692. doi: 10.1109/TVT.2022.3190515. [18] 吳翠先, 周春宇, 徐勇軍, 等. 智能反射面輔助的多入單出共生無(wú)線電魯棒安全資源分配算法[J]. 電子與信息學(xué)報(bào), 2024, 46(4): 1203–1211. doi: 10.11999/JEIT230426.WU Cuixian, ZHOU Chunyu, XU Yongjun, et al. Robust secure resource allocation algorithm for multiple input single output symbiotic radio with reconfigurable intelligent surface assistance[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1203–1211. doi: 10.11999/JEIT230426. [19] 徐勇軍, 姜思巧, 王公仆, 等. 基于不完美CSI的認(rèn)知反向散射通信吞吐量最大化算法[J]. 電子與信息學(xué)報(bào), 2023, 45(7): 2325–2333. doi: 10.11999/JEIT221483.XU Yongjun, JIANG Siqiao, WANG Gongpu, et al. Throughput maximization algorithm for cognitive backscatter communication with imperfect CSI[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2325–2333. doi: 10.11999/JEIT221483. [20] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004. [21] WU Tuo, JIANG Miao, ZHANG Qi, et al. Beamforming design in multiple-input-multiple-output symbiotic radio backscatter systems[J]. IEEE Communications Letters, 2021, 25(6): 1949–1953. doi: 10.1109/LCOMM.2021.3060468. [22] HEIDARPOUR A R, ARDAKANI M, TELLAMBURA C, et al. Network-coded cooperative systems in cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 11011–11023. doi: 10.1109/TWC.2022.3188729. -