一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

強(qiáng)稀疏低副瓣近場聚焦稀疏陣列三維成像

楊磊 宋昊 申瑞陽 陳英杰 胡仲偉 霍鑫 邢孟道

楊磊, 宋昊, 申瑞陽, 陳英杰, 胡仲偉, 霍鑫, 邢孟道. 強(qiáng)稀疏低副瓣近場聚焦稀疏陣列三維成像[J]. 電子與信息學(xué)報, 2024, 46(12): 4471-4482. doi: 10.11999/JEIT231278
引用本文: 楊磊, 宋昊, 申瑞陽, 陳英杰, 胡仲偉, 霍鑫, 邢孟道. 強(qiáng)稀疏低副瓣近場聚焦稀疏陣列三維成像[J]. 電子與信息學(xué)報, 2024, 46(12): 4471-4482. doi: 10.11999/JEIT231278
YANG Lei, SONG Hao, SHEN Ruiyang, CHEN Yingjie, HU Zhongwei, HUO Xin, XING Mengdao. High Sparsity and Low Sidelobe Near-field Focused Sparse Array for Three-Dimensional Imagery[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4471-4482. doi: 10.11999/JEIT231278
Citation: YANG Lei, SONG Hao, SHEN Ruiyang, CHEN Yingjie, HU Zhongwei, HUO Xin, XING Mengdao. High Sparsity and Low Sidelobe Near-field Focused Sparse Array for Three-Dimensional Imagery[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4471-4482. doi: 10.11999/JEIT231278

強(qiáng)稀疏低副瓣近場聚焦稀疏陣列三維成像

doi: 10.11999/JEIT231278 cstr: 32379.14.JEIT231278
基金項目: 國家自然科學(xué)基金(62271487)
詳細(xì)信息
    作者簡介:

    楊磊:男,教授,研究方向為高分辨SAR成像及機(jī)器學(xué)習(xí)理論應(yīng)用

    宋昊:男,碩士生,研究方向為毫米波成像與稀疏陣列構(gòu)型設(shè)計

    申瑞陽:男,碩士生,研究方向為毫米波成像與稀疏陣列構(gòu)型設(shè)計

    陳英杰:男,碩士生,研究方向為毫米波成像與稀疏陣列構(gòu)型設(shè)計

    胡仲偉:男,講師,研究方向為高分辨SAR成像及優(yōu)化學(xué)習(xí)理論

    霍鑫:男,碩士生,研究方向為毫米波成像與稀疏陣列構(gòu)型設(shè)計

    邢孟道:男,教授,研究方向為雷達(dá)成像、動目標(biāo)檢測

    通訊作者:

    楊磊 email: yanglei840626@163.com

  • 中圖分類號: TN957

High Sparsity and Low Sidelobe Near-field Focused Sparse Array for Three-Dimensional Imagery

Funds: The National Natural Science Foundation of China (62271487)
  • 摘要: 在主動式電掃描毫米波安檢成像中,均勻陣列天線存在成本受限以及復(fù)雜度高等瓶頸問題,難以在實際工程中大規(guī)模運用。由此,該文提出一種強(qiáng)稀疏低副瓣的近場聚焦稀疏陣列設(shè)計方法,并進(jìn)一步利用改進(jìn)3維時域成像算法實現(xiàn)高精度3維重建。首先,以近場聚焦位置以及峰值旁瓣電平為約束,以權(quán)向量的$ {\ell _p} $(0<p<1)范數(shù)正則化為目標(biāo)函數(shù),構(gòu)建近場聚焦稀疏陣列天線優(yōu)化模型。然后,通過引入輔助變量,建立旁瓣及聚焦位置約束與輔助變量間的等價代換模型,解決陣列權(quán)向量目標(biāo)函數(shù)與復(fù)雜約束耦合帶來的求解難題,通過等價代換思想對模型化簡并求解。接著,采用復(fù)數(shù)求導(dǎo)結(jié)合啟發(fā)式近似方法對陣列激勵以及位置進(jìn)行優(yōu)化選擇。最后,利用交替方向多乘子法(ADMM)實現(xiàn)聚焦位置、峰值旁瓣約束以及陣列激勵協(xié)同求解,通過改進(jìn)3維時域成像算法實現(xiàn)稀疏陣列3維成像。仿真模擬實驗結(jié)果顯示,該方法可以在滿足陣列天線輻射特性以及近場聚焦條件下,以更少的陣元數(shù)目獲得更低的旁瓣電平。此外,采用實測數(shù)據(jù)驗證稀疏陣列改進(jìn)3維時域成像算法高精度、高效率的優(yōu)勢。
  • 圖  1  圓柱體掃描毫米波安檢成像幾何示意圖

    圖  2  笛卡爾坐標(biāo)系下近場線性陣列天線模型

    圖  3  距離-高度維局部極坐標(biāo)網(wǎng)格

    圖  4  3維場景成像切片劃分

    圖  5  不同算法下天線方向圖對比

    圖  6  陣元位置分布及其對應(yīng)激勵值

    圖  7  輔助變量收斂曲線

    圖  8  均勻陣列與稀疏陣列成像結(jié)果對比

    圖  9  均勻陣列與稀疏陣列點目標(biāo)成像結(jié)果剖面圖

    1  稀疏陣列優(yōu)化算法

     (1)初始化:$ {{\boldsymbol{\gamma}} ^{\mathrm{r}}}(0) $, $ {{\boldsymbol{\gamma}} ^{\mathrm{i}}}(0) $, $ {{\boldsymbol{\varsigma}} ^{\mathrm{r}}}(0) $, $ {{\boldsymbol{\varsigma}} ^{\mathrm{i}}}(0) $, $ {\boldsymbol{w}}(0) $,給定循環(huán)的迭代
     次數(shù)$ K $, $ N $
     (2) for $ i = 0,1, \cdots ,K $
     步驟1 得到$ {q_0}(i + 1) $和$ {g_s}(i + 1) $通過式(12)–式(16)
     步驟2 求解$ {\boldsymbol{w}}(i + 1) $
         for $ k = 0,1, \cdots ,N $
          (1)得到關(guān)于$ {\boldsymbol{w}} $非線性方程通過式(17)–式(21)
          (2)確定$ {{\boldsymbol{w}}^{(k)}}(i + 1) $通過式(22)
         End for $ k = N $
     步驟3 通過式(23)更新$ {{\boldsymbol{\gamma}} ^{\mathrm{r}}}(i + 1) $, $ {{\boldsymbol{\gamma}} ^{\mathrm{i}}}(i + 1) $, $ {{\boldsymbol{\varsigma}} ^{\mathrm{r}}}(i + 1) $, $ {{\boldsymbol{\varsigma}} ^{\mathrm{i}}}(i + 1) $
      end for $ i = K $
      得到最終陣列權(quán)值向量的結(jié)果$ {\boldsymbol{w}} $
    下載: 導(dǎo)出CSV

    表  1  圓周柱面陣列天線實測數(shù)據(jù)參數(shù)

    雷達(dá)參數(shù)數(shù)值雷達(dá)參數(shù)數(shù)值雷達(dá)參數(shù)數(shù)值
    系統(tǒng)工作帶寬6.5 GHz方位/俯仰波束角55°/55°旋轉(zhuǎn)次數(shù)314
    工作頻率27 GHz單脈沖采樣點數(shù)64單次旋轉(zhuǎn)角度0.2867°
    目標(biāo)距離0.4~0.8 m陣元間距0.0052 m旋轉(zhuǎn)半徑0.628 m
    下載: 導(dǎo)出CSV

    表  2  均勻陣列與稀疏陣列點目標(biāo)成像結(jié)果剖面圖定量分析

    點目標(biāo)高度向成像結(jié)果 峰值旁瓣比(dB) 高度向分辨率(mm)
    均勻陣列成像 –24.27 7.76
    稀疏陣列RMA成像 –16.82 7.76
    稀疏陣列改進(jìn)3維時域成像 20.32 7.76
    下載: 導(dǎo)出CSV
  • [1] 馮輝, 涂昊, 高炳西, 等. 被動毫米波太赫茲人體成像關(guān)鍵技術(shù)進(jìn)展[J]. 激光與紅外, 2020, 50(11): 1395–1401. doi: 10.3969/j.issn.1001-5078.2020.11.018.

    FENG Hui, TU Hao, GAO Bingxi, et al. Progress on key technologies of passive millimeter wave and terahertz imaging for human body screening[J]. Laser & Infrared, 2020, 50(11): 1395–1401. doi: 10.3969/j.issn.1001-5078.2020.11.018.
    [2] 李連偉, 秦世引. 基于輕量級U-Net深度學(xué)習(xí)的人體安檢隱匿違禁物的實時檢測[J]. 電子與信息學(xué)報, 2022, 44(10): 3435–3446. doi: 10.11999/JEIT210787.

    LI Lianwei and QIN Shiyin. Real-time detection of hiding contraband in human body during the security check based on lightweight U-Net with deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3435–3446. doi: 10.11999/JEIT210787.
    [3] CHENG Yayun, YOU Yan, ZHU Dong, et al. Reflection removal using dual-polarization and saliency in millimeter-wave and terahertz imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9439–9447. doi: 10.1109/TGRS.2021.3049554.
    [4] SUN Peng, LIU Ting, CHEN Xiaotong, et al. Multi-source aggregation transformer for concealed object detection in millimeter-wave images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(9): 6148–6159. doi: 10.1109/TCSVT.2022.3161815.
    [5] 龐育才, 劉松. 基于改進(jìn)人工蜂群算法的MIMO雷達(dá)稀疏陣列優(yōu)化[J]. 系統(tǒng)工程與電子技術(shù), 2018, 40(5): 1026–1030. doi: 10.3969/j.issn.1001-506X.2018.05.10.

    PANG Yucai and LIU Song. Optimization of MIMO radar sparse array based on modified artificial bee colony[J]. Systems Engineering and Electronics, 2018, 40(5): 1026–1030. doi: 10.3969/j.issn.1001-506X.2018.05.10.
    [6] 黎子皓, 郝程鵬, 閆晟. 稀疏直線陣列優(yōu)化設(shè)計算法綜述[J]. 中國傳媒大學(xué)學(xué)報(自然科學(xué)版), 2021, 28(4): 20–32. doi: 10.16196/j.cnki.issn.1673-4793.2021.04.003.

    LI Zihao, HAO Chengpeng, and YAN Sheng. Review of algorithms for designing sparse linear arrays[J]. Journal of Communication University of China (Science and Technology), 2021, 28(4): 20–32. doi: 10.16196/j.cnki.issn.1673-4793.2021.04.003.
    [7] 孔玥, 邱明華, 黃晟, 等. 基于凸優(yōu)化理論的可掃描稀疏陣列綜合[J]. 雷達(dá)與對抗, 2020, 40(3): 33–37. doi: 10.19341/j.cnki.issn.1009-0401.2020.03.008.

    KONG Yue, QIU Minghua, HUANG Sheng, et al. Synthesis of steerable sparse arrays based on convex optimization theory[J]. RADAR & ECM, 2020, 40(3): 33–37. doi: 10.19341/j.cnki.issn.1009-0401.2020.03.008.
    [8] LI Pengfa, QU Shiwei, YANG Shiwen, et al. Focused array antenna based on subarrays[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 888–891. doi: 10.1109/LAWP.2016.2613887.
    [9] SUN Guilin and ZHU Qi. The design of a focused sparse microstrip antenna array[C]. 2016 IEEE International Symposium on Antennas and Propagation, Fajardo, USA, 2016: 515–516. doi: 10.1109/APS.2016.7695966.
    [10] HUANG Zixuan, CHENG Yujian, and YANG Haining. Synthesis of sparse near-field focusing antenna arrays with accurate control of focal distance by reweighted l1 norm optimization[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 3010–3014. doi: 10.1109/TAP.2020.3025242.
    [11] 陳鷺偉, 羅迎, 倪嘉成, 等. 基于深度展開的SAR大斜視RD成像算法[J]. 空軍工程大學(xué)學(xué)報, 2022, 23(4): 43–50. doi: 10.3969/j.issn.2097-1915.2022.04.007.

    CHEN Luwei, LUO Ying, NI Jiacheng, et al. A novel range-Doppler imaging method for highly squinted SAR based on deep unfolded net[J]. Journal of Air Force Engineering University, 2022, 23(4): 43–50. doi: 10.3969/j.issn.2097-1915.2022.04.007.
    [12] 陳權(quán), 劉文康, 孫光才, 等. 基于超大幅寬的高軌SAR加速BP成像方法[J]. 電子與信息學(xué)報, 2022, 44(9): 3136–3143. doi: 10.11999/JEIT210560.

    CHEN Quan, LIU Wenkang, SUN Guangcai, et al. An Accelerated back-projection algorithm based on large swath for geosynchronous-earch-orbit SAR imaging[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3136–3143. doi: 10.11999/JEIT210560.
    [13] 董祺, 楊澤民, 孫光才, 等. 子場景處理的彈載前斜視SAR時域成像算法[J]. 系統(tǒng)工程與電子技術(shù), 2017, 39(5): 1013–1018. doi: 10.3969/j.issn.1001-506X.2017.05.10.

    DONG Qi, YANG Zemin, SUN Guangcai, et al. Missile-borne forward squint SAR time-domain imaging algorithm based on sub-region processing[J]. Systems Engineering and Electronics, 2017, 39(5): 1013–1018. doi: 10.3969/j.issn.1001-506X.2017.05.10.
    [14] 楊磊, 王騰騰, 陳英杰, 等. 低秩矩陣補(bǔ)全高分辨SAR成像特征重建[J]. 電子與信息學(xué)報, 2023, 45(8): 2965–2974. doi: 10.11999/JEIT220992.

    YANG Lei, WANG Tengteng, CHEN Yingjie, et al. Feature reconstruction of high resolution SAR imagery based on low rank matrix completion[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2965–2974. doi: 10.11999/JEIT220992.
    [15] 謝朋飛, 張磊, 吳振華. 融合ω-K和BP算法的圓柱掃描毫米波三維成像算法[J]. 雷達(dá)學(xué)報, 2018, 7(3): 387–394. doi: 10.12000/JR17112.

    XIE Pengfei, ZHANG Lei, and WU Zhenhua. A three-dimensional imaging algorithm fusion with ω-K and BP algorithm for millimeter-wave cylindrical scanning[J]. Journal of Radars, 2018, 7(3): 387–394. doi: 10.12000/JR17112.
    [16] LIANG Junli, ZHANG Xuan, SO H C, et al. Sparse array beampattern synthesis via alternating direction method of multipliers[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(5): 2333–2345. doi: 10.1109/TAP.2018.2811778.
    [17] 鄭美燕. 基于矩陣束方法的天線陣列優(yōu)化[D]. [碩士論文], 電子科技大學(xué), 2013.

    ZHENG Meiyan. Sparse antenna array synthesis using matrix pencil method[D]. [Master dissertation], University of Electronic Science and Technology of China, 2013.
    [18] WANG Xinkuan and WANG Guibao. A hybrid method based on the iterative Fourier transform and the differential evolution for pattern synthesis of sparse linear arrays[J]. International Journal of Antennas and Propagation, 2018, 2018: 6309192. doi: 10.1155/2018/6309192.
    [19] TENG Duo, LI Yatian, YANG Hu, et al. Genetic algorithm for sparse optimization of mills cross array used in underwater acoustic imaging[J]. Journal of Marine Science and Engineering, 2022, 10(2): 155. doi: 10.3390/jmse10020155.
    [20] CHATTERJEE A, MAHANTI G K, and MAHANTI A. Synthesis of thinned concentric ring array antenna in predefined phi-planes using binary firefly and binary particle swarm optimization algorithm[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2015, 28(2): 164–174. doi: 10.1002/jnm.1994.
    [21] HUANG Zixuan and CHENG Yujian. Near-field pattern synthesis for sparse focusing antenna arrays based on Bayesian compressive sensing and convex optimization[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(10): 5249–5257. doi: 10.1109/TAP.2018.2860044.
    [22] 王洪雁, 于若男. 基于稀疏和低秩恢復(fù)的穩(wěn)健DOA估計方法[J]. 電子與信息學(xué)報, 2020, 42(3): 589–596. doi: 10.11999/JEIT190263.

    WANG Hongyan and YU Ruonan. Sparse and low rank recovery based robust DOA estimation method[J]. Journal of Electronics & Information Technology, 2020, 42(3): 589–596. doi: 10.11999/JEIT190263.
    [23] ZHAO Xiaobin, LI Wei, ZHANG Mengmeng, et al. Adaptive iterated shrinkage thresholding-based Lp-norm sparse representation for hyperspectral imagery target detection[J]. Remote Sensing, 2020, 12(23): 3991. doi: 10.3390/rs12233991.
    [24] 楊磊, 陳英杰, 王騰騰, 等. 旅客人身時頻調(diào)和型毫米波三維重建[J]. 紅外與毫米波學(xué)報, 2023, 42(3): 327–338. doi: 10.11972/j.issn.1001-9014.2023.03.006.

    YANG Lei, CHEN Yingjie, WANG Tengteng, et al. Three-dimensional reconstruction algorithm for passengers based on time-frequency coordination[J]. Journal of Infrared and Millimeter Waves, 2023, 42(3): 327–338. doi: 10.11972/j.issn.1001-9014.2023.03.006.
  • 加載中
圖(9) / 表(3)
計量
  • 文章訪問數(shù):  243
  • HTML全文瀏覽量:  133
  • PDF下載量:  45
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2023-11-20
  • 修回日期:  2024-11-10
  • 網(wǎng)絡(luò)出版日期:  2024-11-19
  • 刊出日期:  2024-12-01

目錄

    /

    返回文章
    返回