強(qiáng)稀疏低副瓣近場聚焦稀疏陣列三維成像
doi: 10.11999/JEIT231278 cstr: 32379.14.JEIT231278
-
1.
中國民航大學(xué)電子信息與自動化學(xué)院 天津 300300
-
2.
西安電子科技大學(xué)雷達(dá)信號處理國家重點實驗室 西安 710071
High Sparsity and Low Sidelobe Near-field Focused Sparse Array for Three-Dimensional Imagery
-
1.
College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
-
2.
National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
-
摘要: 在主動式電掃描毫米波安檢成像中,均勻陣列天線存在成本受限以及復(fù)雜度高等瓶頸問題,難以在實際工程中大規(guī)模運用。由此,該文提出一種強(qiáng)稀疏低副瓣的近場聚焦稀疏陣列設(shè)計方法,并進(jìn)一步利用改進(jìn)3維時域成像算法實現(xiàn)高精度3維重建。首先,以近場聚焦位置以及峰值旁瓣電平為約束,以權(quán)向量的$ {\ell _p} $(0<p<1)范數(shù)正則化為目標(biāo)函數(shù),構(gòu)建近場聚焦稀疏陣列天線優(yōu)化模型。然后,通過引入輔助變量,建立旁瓣及聚焦位置約束與輔助變量間的等價代換模型,解決陣列權(quán)向量目標(biāo)函數(shù)與復(fù)雜約束耦合帶來的求解難題,通過等價代換思想對模型化簡并求解。接著,采用復(fù)數(shù)求導(dǎo)結(jié)合啟發(fā)式近似方法對陣列激勵以及位置進(jìn)行優(yōu)化選擇。最后,利用交替方向多乘子法(ADMM)實現(xiàn)聚焦位置、峰值旁瓣約束以及陣列激勵協(xié)同求解,通過改進(jìn)3維時域成像算法實現(xiàn)稀疏陣列3維成像。仿真模擬實驗結(jié)果顯示,該方法可以在滿足陣列天線輻射特性以及近場聚焦條件下,以更少的陣元數(shù)目獲得更低的旁瓣電平。此外,采用實測數(shù)據(jù)驗證稀疏陣列改進(jìn)3維時域成像算法高精度、高效率的優(yōu)勢。Abstract: In active electrical scanning millimeter-wave security imaging, the uniform array antenna has the bottleneck of uncontrolled cost and high complexity, which is difficult to be widely applied in practices. To this end, a near-field focused sparse array design algorithm for high sparsity and low sidelobes is proposed in this paper. It applies an improved three dimensional (3D) time-domain imaging algorithm to achieve high-accuracy 3D reconstruction. Firstly, the near-field focusing sparse array antenna model is constructed by taking the near-field focusing position and peak sidelobe level as constraints, where the $ {\ell _p} $(0<p<1) norm of the weight vector regularization is established as the objective function. Secondly, by introducing auxiliary variables and establishing equivalent substitution models between sidelobe and focus position constraints and auxiliary variables, the problem of solving the array weight vector in the coupling of the objective function and complex constraints is developed. The model is simplified and solved through the idea of equivalent substitution. Then, the array excitation and position are optimized using a combination of complex number differentiation and heuristic approximation methods. Finally, the Alternating Direction Method of Multipliers (ADMM) is employed to achieve the focus position, peak sidelobe constraint, and array excitation in a cooperative manner. The sparse array 3D imaging is realized by improving the 3D time-domain imaging algorithm. The experimental results show that the proposed method is capable of obtaining lower sidelobe level with fewer array elements under the condition of satisfying the radiation characteristics of array antenna and near-field focusing. Applying raw millimeter-wave data, the advantages of sparse array 3D time-domain imaging algorithm are verified in terms of high accuracy and high efficiency.
-
1 稀疏陣列優(yōu)化算法
(1)初始化:$ {{\boldsymbol{\gamma}} ^{\mathrm{r}}}(0) $, $ {{\boldsymbol{\gamma}} ^{\mathrm{i}}}(0) $, $ {{\boldsymbol{\varsigma}} ^{\mathrm{r}}}(0) $, $ {{\boldsymbol{\varsigma}} ^{\mathrm{i}}}(0) $, $ {\boldsymbol{w}}(0) $,給定循環(huán)的迭代
次數(shù)$ K $, $ N $(2) for $ i = 0,1, \cdots ,K $ 步驟1 得到$ {q_0}(i + 1) $和$ {g_s}(i + 1) $通過式(12)–式(16) 步驟2 求解$ {\boldsymbol{w}}(i + 1) $ for $ k = 0,1, \cdots ,N $ (1)得到關(guān)于$ {\boldsymbol{w}} $非線性方程通過式(17)–式(21) (2)確定$ {{\boldsymbol{w}}^{(k)}}(i + 1) $通過式(22) End for $ k = N $ 步驟3 通過式(23)更新$ {{\boldsymbol{\gamma}} ^{\mathrm{r}}}(i + 1) $, $ {{\boldsymbol{\gamma}} ^{\mathrm{i}}}(i + 1) $, $ {{\boldsymbol{\varsigma}} ^{\mathrm{r}}}(i + 1) $, $ {{\boldsymbol{\varsigma}} ^{\mathrm{i}}}(i + 1) $ end for $ i = K $ 得到最終陣列權(quán)值向量的結(jié)果$ {\boldsymbol{w}} $ 下載: 導(dǎo)出CSV
表 1 圓周柱面陣列天線實測數(shù)據(jù)參數(shù)
雷達(dá)參數(shù) 數(shù)值 雷達(dá)參數(shù) 數(shù)值 雷達(dá)參數(shù) 數(shù)值 系統(tǒng)工作帶寬 6.5 GHz 方位/俯仰波束角 55°/55° 旋轉(zhuǎn)次數(shù) 314 工作頻率 27 GHz 單脈沖采樣點數(shù) 64 單次旋轉(zhuǎn)角度 0.2867 °目標(biāo)距離 0.4~0.8 m 陣元間距 0.0052 m旋轉(zhuǎn)半徑 0.628 m 下載: 導(dǎo)出CSV
表 2 均勻陣列與稀疏陣列點目標(biāo)成像結(jié)果剖面圖定量分析
點目標(biāo)高度向成像結(jié)果 峰值旁瓣比(dB) 高度向分辨率(mm) 均勻陣列成像 –24.27 7.76 稀疏陣列RMA成像 –16.82 7.76 稀疏陣列改進(jìn)3維時域成像 –20.32 7.76 下載: 導(dǎo)出CSV
-
[1] 馮輝, 涂昊, 高炳西, 等. 被動毫米波太赫茲人體成像關(guān)鍵技術(shù)進(jìn)展[J]. 激光與紅外, 2020, 50(11): 1395–1401. doi: 10.3969/j.issn.1001-5078.2020.11.018.FENG Hui, TU Hao, GAO Bingxi, et al. Progress on key technologies of passive millimeter wave and terahertz imaging for human body screening[J]. Laser & Infrared, 2020, 50(11): 1395–1401. doi: 10.3969/j.issn.1001-5078.2020.11.018. [2] 李連偉, 秦世引. 基于輕量級U-Net深度學(xué)習(xí)的人體安檢隱匿違禁物的實時檢測[J]. 電子與信息學(xué)報, 2022, 44(10): 3435–3446. doi: 10.11999/JEIT210787.LI Lianwei and QIN Shiyin. Real-time detection of hiding contraband in human body during the security check based on lightweight U-Net with deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3435–3446. doi: 10.11999/JEIT210787. [3] CHENG Yayun, YOU Yan, ZHU Dong, et al. Reflection removal using dual-polarization and saliency in millimeter-wave and terahertz imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9439–9447. doi: 10.1109/TGRS.2021.3049554. [4] SUN Peng, LIU Ting, CHEN Xiaotong, et al. Multi-source aggregation transformer for concealed object detection in millimeter-wave images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(9): 6148–6159. doi: 10.1109/TCSVT.2022.3161815. [5] 龐育才, 劉松. 基于改進(jìn)人工蜂群算法的MIMO雷達(dá)稀疏陣列優(yōu)化[J]. 系統(tǒng)工程與電子技術(shù), 2018, 40(5): 1026–1030. doi: 10.3969/j.issn.1001-506X.2018.05.10.PANG Yucai and LIU Song. Optimization of MIMO radar sparse array based on modified artificial bee colony[J]. Systems Engineering and Electronics, 2018, 40(5): 1026–1030. doi: 10.3969/j.issn.1001-506X.2018.05.10. [6] 黎子皓, 郝程鵬, 閆晟. 稀疏直線陣列優(yōu)化設(shè)計算法綜述[J]. 中國傳媒大學(xué)學(xué)報(自然科學(xué)版), 2021, 28(4): 20–32. doi: 10.16196/j.cnki.issn.1673-4793.2021.04.003.LI Zihao, HAO Chengpeng, and YAN Sheng. Review of algorithms for designing sparse linear arrays[J]. Journal of Communication University of China (Science and Technology), 2021, 28(4): 20–32. doi: 10.16196/j.cnki.issn.1673-4793.2021.04.003. [7] 孔玥, 邱明華, 黃晟, 等. 基于凸優(yōu)化理論的可掃描稀疏陣列綜合[J]. 雷達(dá)與對抗, 2020, 40(3): 33–37. doi: 10.19341/j.cnki.issn.1009-0401.2020.03.008.KONG Yue, QIU Minghua, HUANG Sheng, et al. Synthesis of steerable sparse arrays based on convex optimization theory[J]. RADAR & ECM, 2020, 40(3): 33–37. doi: 10.19341/j.cnki.issn.1009-0401.2020.03.008. [8] LI Pengfa, QU Shiwei, YANG Shiwen, et al. Focused array antenna based on subarrays[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 888–891. doi: 10.1109/LAWP.2016.2613887. [9] SUN Guilin and ZHU Qi. The design of a focused sparse microstrip antenna array[C]. 2016 IEEE International Symposium on Antennas and Propagation, Fajardo, USA, 2016: 515–516. doi: 10.1109/APS.2016.7695966. [10] HUANG Zixuan, CHENG Yujian, and YANG Haining. Synthesis of sparse near-field focusing antenna arrays with accurate control of focal distance by reweighted l1 norm optimization[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 3010–3014. doi: 10.1109/TAP.2020.3025242. [11] 陳鷺偉, 羅迎, 倪嘉成, 等. 基于深度展開的SAR大斜視RD成像算法[J]. 空軍工程大學(xué)學(xué)報, 2022, 23(4): 43–50. doi: 10.3969/j.issn.2097-1915.2022.04.007.CHEN Luwei, LUO Ying, NI Jiacheng, et al. A novel range-Doppler imaging method for highly squinted SAR based on deep unfolded net[J]. Journal of Air Force Engineering University, 2022, 23(4): 43–50. doi: 10.3969/j.issn.2097-1915.2022.04.007. [12] 陳權(quán), 劉文康, 孫光才, 等. 基于超大幅寬的高軌SAR加速BP成像方法[J]. 電子與信息學(xué)報, 2022, 44(9): 3136–3143. doi: 10.11999/JEIT210560.CHEN Quan, LIU Wenkang, SUN Guangcai, et al. An Accelerated back-projection algorithm based on large swath for geosynchronous-earch-orbit SAR imaging[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3136–3143. doi: 10.11999/JEIT210560. [13] 董祺, 楊澤民, 孫光才, 等. 子場景處理的彈載前斜視SAR時域成像算法[J]. 系統(tǒng)工程與電子技術(shù), 2017, 39(5): 1013–1018. doi: 10.3969/j.issn.1001-506X.2017.05.10.DONG Qi, YANG Zemin, SUN Guangcai, et al. Missile-borne forward squint SAR time-domain imaging algorithm based on sub-region processing[J]. Systems Engineering and Electronics, 2017, 39(5): 1013–1018. doi: 10.3969/j.issn.1001-506X.2017.05.10. [14] 楊磊, 王騰騰, 陳英杰, 等. 低秩矩陣補(bǔ)全高分辨SAR成像特征重建[J]. 電子與信息學(xué)報, 2023, 45(8): 2965–2974. doi: 10.11999/JEIT220992.YANG Lei, WANG Tengteng, CHEN Yingjie, et al. Feature reconstruction of high resolution SAR imagery based on low rank matrix completion[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2965–2974. doi: 10.11999/JEIT220992. [15] 謝朋飛, 張磊, 吳振華. 融合ω-K和BP算法的圓柱掃描毫米波三維成像算法[J]. 雷達(dá)學(xué)報, 2018, 7(3): 387–394. doi: 10.12000/JR17112.XIE Pengfei, ZHANG Lei, and WU Zhenhua. A three-dimensional imaging algorithm fusion with ω-K and BP algorithm for millimeter-wave cylindrical scanning[J]. Journal of Radars, 2018, 7(3): 387–394. doi: 10.12000/JR17112. [16] LIANG Junli, ZHANG Xuan, SO H C, et al. Sparse array beampattern synthesis via alternating direction method of multipliers[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(5): 2333–2345. doi: 10.1109/TAP.2018.2811778. [17] 鄭美燕. 基于矩陣束方法的天線陣列優(yōu)化[D]. [碩士論文], 電子科技大學(xué), 2013.ZHENG Meiyan. Sparse antenna array synthesis using matrix pencil method[D]. [Master dissertation], University of Electronic Science and Technology of China, 2013. [18] WANG Xinkuan and WANG Guibao. A hybrid method based on the iterative Fourier transform and the differential evolution for pattern synthesis of sparse linear arrays[J]. International Journal of Antennas and Propagation, 2018, 2018: 6309192. doi: 10.1155/2018/6309192. [19] TENG Duo, LI Yatian, YANG Hu, et al. Genetic algorithm for sparse optimization of mills cross array used in underwater acoustic imaging[J]. Journal of Marine Science and Engineering, 2022, 10(2): 155. doi: 10.3390/jmse10020155. [20] CHATTERJEE A, MAHANTI G K, and MAHANTI A. Synthesis of thinned concentric ring array antenna in predefined phi-planes using binary firefly and binary particle swarm optimization algorithm[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2015, 28(2): 164–174. doi: 10.1002/jnm.1994. [21] HUANG Zixuan and CHENG Yujian. Near-field pattern synthesis for sparse focusing antenna arrays based on Bayesian compressive sensing and convex optimization[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(10): 5249–5257. doi: 10.1109/TAP.2018.2860044. [22] 王洪雁, 于若男. 基于稀疏和低秩恢復(fù)的穩(wěn)健DOA估計方法[J]. 電子與信息學(xué)報, 2020, 42(3): 589–596. doi: 10.11999/JEIT190263.WANG Hongyan and YU Ruonan. Sparse and low rank recovery based robust DOA estimation method[J]. Journal of Electronics & Information Technology, 2020, 42(3): 589–596. doi: 10.11999/JEIT190263. [23] ZHAO Xiaobin, LI Wei, ZHANG Mengmeng, et al. Adaptive iterated shrinkage thresholding-based Lp-norm sparse representation for hyperspectral imagery target detection[J]. Remote Sensing, 2020, 12(23): 3991. doi: 10.3390/rs12233991. [24] 楊磊, 陳英杰, 王騰騰, 等. 旅客人身時頻調(diào)和型毫米波三維重建[J]. 紅外與毫米波學(xué)報, 2023, 42(3): 327–338. doi: 10.11972/j.issn.1001-9014.2023.03.006.YANG Lei, CHEN Yingjie, WANG Tengteng, et al. Three-dimensional reconstruction algorithm for passengers based on time-frequency coordination[J]. Journal of Infrared and Millimeter Waves, 2023, 42(3): 327–338. doi: 10.11972/j.issn.1001-9014.2023.03.006. -