一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

SIMON類(lèi)非線性函數(shù)的線性性質(zhì)研究

關(guān)杰 盧健偉

關(guān)杰, 盧健偉. SIMON類(lèi)非線性函數(shù)的線性性質(zhì)研究[J]. 電子與信息學(xué)報(bào), 2021, 43(11): 3359-3366. doi: 10.11999/JEIT200999
引用本文: 關(guān)杰, 盧健偉. SIMON類(lèi)非線性函數(shù)的線性性質(zhì)研究[J]. 電子與信息學(xué)報(bào), 2021, 43(11): 3359-3366. doi: 10.11999/JEIT200999
Jie GUAN, Jianwei LU. Research on Linear Properties of SIMON Class Nonlinear Function[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3359-3366. doi: 10.11999/JEIT200999
Citation: Jie GUAN, Jianwei LU. Research on Linear Properties of SIMON Class Nonlinear Function[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3359-3366. doi: 10.11999/JEIT200999

SIMON類(lèi)非線性函數(shù)的線性性質(zhì)研究

doi: 10.11999/JEIT200999 cstr: 32379.14.JEIT200999
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61572516)
詳細(xì)信息
    作者簡(jiǎn)介:

    關(guān)杰:女,1974年生,教授,博士生導(dǎo)師,研究方向?yàn)槊艽a理論和密碼算法分析

    盧健偉:男,1997年生,碩士生,研究方向?yàn)閷?duì)稱(chēng)密碼設(shè)計(jì)與分析

    通訊作者:

    盧健偉 lujianwei1997@163.com

  • 中圖分類(lèi)號(hào): TN918.1

Research on Linear Properties of SIMON Class Nonlinear Function

Funds: The National Natural Science Foundation of China (61572516)
  • 摘要: SIMON算法是由美國(guó)國(guó)家安全局(NSA)在2013 年推出的一簇輕量級(jí)分組密碼算法,具有實(shí)現(xiàn)代價(jià)低、安全性能好等優(yōu)點(diǎn),其輪函數(shù)采用了$F(x) = (x < < < a){{\& }}(x < < < b) \oplus (x < < < c)$類(lèi)型的非線性函數(shù)。該文研究了移位參數(shù)(a,b,c)一般化時(shí)SIMON類(lèi)算法輪函數(shù)的線性性質(zhì),解決了這類(lèi)非線性函數(shù)的Walsh譜分布規(guī)律問(wèn)題,證明了其相關(guān)優(yōu)勢(shì)只可能取到${{0}}$${2^{ - k}}$,其中$k \in Z$${{0}} \le k \le \left\lfloor {{2^{ - 1}}n} \right\rfloor $,并且對(duì)于特定條件下的每一個(gè)$k$,都存在相應(yīng)的掩碼對(duì)使得相關(guān)優(yōu)勢(shì)等于${2^{ - k}}$,給出了相關(guān)優(yōu)勢(shì)取到${2^{ - 1}}$時(shí)的充分必要條件及掩碼對(duì)的計(jì)數(shù),給出了特定條件下非平凡相關(guān)優(yōu)勢(shì)取到最小值時(shí)的充分必要條件與掩碼對(duì)的計(jì)數(shù)。
  • 表  1  ${F_{abc}}(x)$相關(guān)優(yōu)勢(shì)計(jì)數(shù)表

    $ \left| \rho \right|$
    011/21/41/81/161/32
    $F_{182}^8$482551641280825676800
    $F_{051}^8$482551641280825676800
    $F_{182}^9$207863172172815360371200
    $F_{051}^9$207863172172815360371200
    下載: 導(dǎo)出CSV

    表  2  轉(zhuǎn)變成不相交2次型算法(算法1)

     輸入:2次型布爾函數(shù)$f\left( x \right) = f\left( {{x_1},{x_2}, \cdots ,{x_n}} \right)$
     輸出:可逆矩陣${\boldsymbol{M}}$,不相交二次型$\hat f\left( x \right)$使得$\hat f\left( x \right){\rm{ = }}f\left( {x{\boldsymbol{M}}} \right)$
     (1) /*初始化*/
     (2) ${\boldsymbol{M}} \leftarrow {\boldsymbol{I}}$          /*${\boldsymbol{I}}$是$n \times n$的可逆矩陣*/
     (3) $\hat f\left( x \right) \leftarrow f\left( {{x_1},{x_2}, \cdots ,{x_n}} \right)$
     (4) $v \leftarrow {\rm{PickIndex} }\left( {\hat f} \right)$
     (5) /*不相交化*/
     (6) 當(dāng)$\sigma \left( {\hat f,{x_v}} \right) \ge 2$時(shí),執(zhí)行
     (7)  $m \leftarrow \sigma \left( {\hat f,{x_v}} \right)$   /*$\hat f$中包含${x_v}$的2次項(xiàng)個(gè)數(shù)*/
     (8)  在$\hat f$中找出所有的2次項(xiàng)${x_v}{x_{{t_i}}}$滿(mǎn)足${t_1} < {t_2} < \cdots < {t_m}$
     (9)  $\hat f \leftarrow {\rm{Substitute}}\left( {\hat f,{{\boldsymbol{I}}_{{t_1} \leftarrow {t_1},{t_2}, \cdots ,{t_m}}}} \right)$
     (10)  ${\boldsymbol{M}} \leftarrow {{\boldsymbol{I}}_{{t_1} \leftarrow {t_1},{t_2}, \cdots ,{t_m}}} \cdot {\boldsymbol{M}}$
     (11)  如果$\sigma \left( {\hat f,{x_{{t_1}}}} \right) \ge 2$,執(zhí)行
     (12)   $k \leftarrow \sigma \left( {\hat f,{x_{{t_1}}}} \right)$
     (13)   在$\hat f$中找出所有的2次項(xiàng)${x_{{t_1}}}{x_{{s_i}}}$滿(mǎn)足
          ${s_1} < {s_2} < \cdots < {s_m}$,
    下載: 導(dǎo)出CSV
  • [1] BEAULIEU R, SHORS D, SMITH J, et al. The SIMON and SPECK lightweight block ciphers[C]. The 52nd Annual Design Automation Conference. San Francisco, USA, 2015: 1-6.
    [2] WANG N, WANG X, JIA K, et al. Difffferential attacks on reduced SIMON versions with dynamic key-guessing techniques[J]. IACR Cryptology ePrint Archive, 2014: 2014/448.
    [3] 董向忠, 關(guān)杰. SIMON類(lèi)算法輪函數(shù)的差分性質(zhì)分析[J]. 密碼學(xué)報(bào), 2015, 2(3): 207–216. doi: 10.13868/j.cnki.jcr.000072

    DONG Xiangzhong, GUAN Jie. Analysis on difffferential properties of the round function of SIMON family of block ciphers[J]. Journal of Cryptologic Research, 2015, 2(3): 207–216. doi: 10.13868/j.cnki.jcr.000072
    [4] SEYED MOJTABA DEHNAVI. Further Observations on SIMON and SPECK Block Cipher Families[J]. Cryptography, 2018, 3(1): 1. doi: 10.3390/cryptography3010001
    [5] 董向忠, 關(guān)杰. SIMON類(lèi)算法輪函數(shù)的線性性質(zhì)[J]. 山東大學(xué)學(xué)報(bào)(理學(xué)版), 2015, 50(9): 49–54.

    DONG Xiangzhong, GUAN Jie. Linear properties of the round function of SIMON family of block ciphers[J]. 山東大學(xué)學(xué)報(bào), 2015, 50(9): 49–54.
    [6] ABDELRAHEEM N A, ALIZADEH J, ALKHZAIMI H A, et al. Improved linear cryptanalysis of reduced-round SIMON[EB/OL]. https://eprint.iacr.org/2014/681, 2014.
    [7] CHEN H, WANG X. Improved linear hull attack on round-reduced SIMON with dynamic key-guessing techniques[C]. Fast Software Encryption—FSE 2016. Berlin, Germany, 2016: 428–449. doi: 10.1007/978-3-662-52993-5_22.
    [8] SHI Danping, HU Lei, SUN Siwei, et al. Improved linear(hull) cryptanalysis of round-reduced versions of SIMON[J]. Science China (Information Sciences) 60.03(2017): 223–225. doi: 10.1007/s11432-015-0007-1.
    [9] REHAM A and POORVI L. V linear cryptanalysis of reduced-round simon using super rounds[J]. Cryptography, 2020, 4(1): 9. doi: 10.3390/cryptography4010009
    [10] BOURA C, NAYA-PLASENCIA M, and SUDER V. Scrutinizing and improving impossible differential attacks: Applications to CLEFIA, Camellia, LBlock and Simon[C]. The 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, China, 2014: 179–199.
    [11] 陳展, 王寧. SIMON算法的不可能差分分析[J]. 密碼學(xué)報(bào), 2015, 2(6): 505–514. doi: 10.13868/j.cnki.jcr.000097

    CHEN Zhan and WANG Ning. Impossible difffferential cryptanalysis of reduced-round SIMON[J]. Journal of Cryptologic Research, 2015, 2(6): 505–514. doi: 10.13868/j.cnki.jcr.000097
    [12] KONDO K, SASAKI Y, TODO Y, et al. On the design rationale of SIMON block cipher: Integral attacks and impossible differential attacksagainst SIMON variants[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2018, 101(1): 88–98.
    [13] YU Xiaoli, WU Wenling, SHI Zhenqing, et al. Zero correlation linear cryptanalysis of reduced-round SIMON[J]. Journal of Computer Science and Technology, 2015, 30(6): 1358–1369. doi: 10.1007/s11390-015-1603-5
    [14] SUN L, FU K, and WANG M. Improved zero-correlation cryptanalysis on SIMON[C]. Information Security and Cryptology—INSCRYPT 2015. Beijing, China, 2015: 125–143.
    [15] ZHANG Kai, Guanjie, HU Bin, et al. Security evaluation on Simeck against zero-correlation linear cryptanalysis[C]. IET Information Security, 2018, 12(1): 87–93. doi: 10.1049/iet-ifs.2016.0503.
    [16] FU Kai, SUN Ling, and WANG Meiqin. New integral attacks on SIMON[J]. IET Information Security, 2017, 11(5): 277–286. doi: 10.1049/iet-ifs.2016.0241
    [17] CHU Zhihui, CHEN Huaifeng, WANG Xiaoyun, et al. Improved integral attacks on SIMON32 and SIMON48 with dynamic key-guessing techniques[J]. Security and Communication Networks, 2018: 5160237. doi: 10.1155/2018/5160237
    [18] YANG G, ZHU B, SUDER V, et al. The Simeck Family of Lightweight Block Ciphers[C]. Güneysu T, Handschuh H. (eds) Cryptographic Hardware and Embedded Systems, CHES 2015. Lecture Notes in Computer Science, vol 9293. Springer, Berlin, Germany, https://doi.org/10.1007/978-3-662-48324-4_16.
    [19] SHI D, SUN S, SASAKI Y, et al. Correlation of Quadratic Boolean Functions: Cryptanalysis of All Versions of Full MORUS[M]. Advances in Cryptology–CRYPTO, 2019.
    [20] 鞠桂枝, 趙亞群. 多輸出部分Bent函數(shù)若干性質(zhì)的研究[J]. 工程數(shù)學(xué)學(xué)報(bào), 2005(6): 183–186.
  • 加載中
表(2)
計(jì)量
  • 文章訪問(wèn)數(shù):  927
  • HTML全文瀏覽量:  429
  • PDF下載量:  74
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2020-11-25
  • 修回日期:  2021-03-30
  • 網(wǎng)絡(luò)出版日期:  2021-05-06
  • 刊出日期:  2021-11-23

目錄

    /

    返回文章
    返回