一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于紅外注意力提升機(jī)制的熱成像測(cè)溫區(qū)域?qū)嵗指?/p>

易詩(shī) 李俊杰 賈勇

易詩(shī), 李俊杰, 賈勇. 基于紅外注意力提升機(jī)制的熱成像測(cè)溫區(qū)域?qū)嵗指頪J]. 電子與信息學(xué)報(bào), 2021, 43(12): 3505-3512. doi: 10.11999/JEIT200862
引用本文: 易詩(shī), 李俊杰, 賈勇. 基于紅外注意力提升機(jī)制的熱成像測(cè)溫區(qū)域?qū)嵗指頪J]. 電子與信息學(xué)報(bào), 2021, 43(12): 3505-3512. doi: 10.11999/JEIT200862
Shi YI, Junjie LI, Yong JIA. Instance Segmentation of Thermal Imaging Temperature Measurement Region Based on Infrared Attention Enhancement Mechanism[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3505-3512. doi: 10.11999/JEIT200862
Citation: Shi YI, Junjie LI, Yong JIA. Instance Segmentation of Thermal Imaging Temperature Measurement Region Based on Infrared Attention Enhancement Mechanism[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3505-3512. doi: 10.11999/JEIT200862

基于紅外注意力提升機(jī)制的熱成像測(cè)溫區(qū)域?qū)嵗指?/h2>

doi: 10.11999/JEIT200862 cstr: 32379.14.JEIT200862
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61771096),工業(yè)物聯(lián)網(wǎng)與網(wǎng)絡(luò)化控制教育部重點(diǎn)實(shí)驗(yàn)室開放基金(2020FF06),太赫茲科學(xué)技術(shù)四川省重點(diǎn)實(shí)驗(yàn)室開放基金(THZSC202001)
詳細(xì)信息
    作者簡(jiǎn)介:

    易詩(shī):男,1983年生,高級(jí)實(shí)驗(yàn)師,研究方向?yàn)樯疃葘W(xué)習(xí)紅外圖像處理

    李俊杰:男,1997年生,碩士生,研究方向?yàn)樯疃葘W(xué)習(xí)圖像處理

    賈勇:男,1986年生,副教授,研究方向?yàn)榇走_(dá)圖像處理

    通訊作者:

    易詩(shī) 549745481@qq.com

  • 中圖分類號(hào): TN911.73; TP391

Instance Segmentation of Thermal Imaging Temperature Measurement Region Based on Infrared Attention Enhancement Mechanism

Funds: The National Natural Science Foundation of China (61771096), The Key Laboratory of Industrial Internet of Things & Networked Control Foundation, Ministry of Education (2020FF06), The Terahertz Science and Technology Key Laboratory Foundation of Sichuan Province (THZSC202001)
  • 摘要: AI+熱成像人體溫度監(jiān)測(cè)系統(tǒng)被廣泛用于人群密集的人體實(shí)時(shí)溫度測(cè)量。此類系統(tǒng)檢測(cè)人的頭部區(qū)域進(jìn)行溫度測(cè)量,由于各類遮擋,溫度測(cè)量區(qū)域可能太小而無(wú)法正確測(cè)量。為了解決這個(gè)問題,該文提出一種融合紅外注意力提升機(jī)制的無(wú)錨點(diǎn)實(shí)例分割網(wǎng)絡(luò),用于實(shí)時(shí)紅外熱成像溫度測(cè)量區(qū)域?qū)嵗指?。該文所提出的?shí)例分割網(wǎng)絡(luò)在檢測(cè)階段和分割階段融合紅外空間注意力模塊(ISAM),旨在準(zhǔn)確分割紅外圖像中的頭部裸露區(qū)域,以進(jìn)行準(zhǔn)確實(shí)時(shí)的溫度測(cè)量。結(jié)合公共熱成像面部數(shù)據(jù)集和采集的紅外熱成像數(shù)據(jù)集,制作了“熱成像溫度測(cè)量區(qū)域分割數(shù)據(jù)集”用于網(wǎng)絡(luò)訓(xùn)練。實(shí)驗(yàn)結(jié)果表明:該方法對(duì)紅外熱成像圖像中頭部裸露測(cè)溫區(qū)域的平均檢測(cè)精度達(dá)到88.6%,平均分割精度達(dá)到86.5%,平均處理速度達(dá)到33.5 fps,在評(píng)價(jià)指標(biāo)上優(yōu)于大多數(shù)先進(jìn)的實(shí)例分割方法。
  • 圖  1  熱成像體溫測(cè)量方法

    圖  2  用于紅外熱成像溫度測(cè)量區(qū)域分割的無(wú)錨點(diǎn)實(shí)例分割網(wǎng)絡(luò)結(jié)構(gòu)

    圖  3  紅外空間注意力模塊結(jié)構(gòu)

    圖  4  紅外空間注意力模塊目標(biāo)檢測(cè)階段有效性測(cè)試

    圖  5  紅外空間注意力模塊目標(biāo)分割階段有效性測(cè)試

    表  1  訓(xùn)練集中各類數(shù)據(jù)分布

    數(shù)據(jù)類型帶口罩的面部裸露的面部存在各類遮擋的面部
    比例(%)402040
    下載: 導(dǎo)出CSV

    表  2  數(shù)據(jù)集中標(biāo)簽對(duì)應(yīng)的標(biāo)注色

    分割類別溫度測(cè)量區(qū)域頭發(fā)帽子眼鏡口罩
    R01390255255
    G1000255105255
    B0139127180210
    下載: 導(dǎo)出CSV

    表  3  ISAM模塊目標(biāo)檢測(cè)階段有效性驗(yàn)證實(shí)驗(yàn)結(jié)果

    結(jié)構(gòu)AP(%)AMP(%)fps
    無(wú)注意力提升機(jī)制83.780.038.0
    融合CBAM模塊85.681.533.5
    融合BAM模塊84.881.034.5
    融合ISAM模塊88.684.535.5
    下載: 導(dǎo)出CSV

    表  4  ISAM模塊目標(biāo)分割階段有效性實(shí)驗(yàn)結(jié)果

    結(jié)構(gòu)AP(%)AMP(%)fps
    無(wú)注意力提升機(jī)制88.684.535.5
    融合CBAM模塊88.684.331.2
    融合BAM模塊88.684.132.5
    融合ISAM模塊88.686.533.5
    下載: 導(dǎo)出CSV

    表  5  熱成像測(cè)溫區(qū)域?qū)嵗指罘椒▽?duì)比實(shí)驗(yàn)結(jié)果

    實(shí)例分割方法AP(%)AMP(%)fps
    Mask R-CNN83.880.311.5
    YOLACT75.670.138.0
    CenterMask82.878.133.0
    PolarMask83.679.030.5
    本文方法88.686.533.5
    下載: 導(dǎo)出CSV
  • [1] USAMENTIAGA R, VENEGAS P, GUEREDIAGA J, et al. Infrared thermography for temperature measurement and non-destructive testing[J]. Sensors, 2014, 14(7): 12305–12348. doi: 10.3390/s140712305
    [2] KAMMERSGAARD T S, MALMKVIST J, and PEDERSEN L J. Infrared thermography–a non-invasive tool to evaluate thermal status of neonatal pigs based on surface temperature[J]. Animal, 2013, 7(12): 2026–2034. doi: 10.1017/S1751731113001778
    [3] ARORA N, MARTINS D, RUGGERIO D, et al. Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer[J]. The American Journal of Surgery, 2008, 196(4): 523–526. doi: 10.1016/j.amjsurg.2008.06.015
    [4] KONTOS M, WILSON R, and FENTIMAN I. Digital Infrared Thermal Imaging (DITI) of breast lesions: Sensitivity and specificity of detection of primary breast cancers[J]. Clinical Radiology, 2011, 66(6): 536–539. doi: 10.1016/j.crad.2011.01.009
    [5] CLARK R P and STOTHERS J K. Neonatal skin temperature distribution using infra-red colour thermography[J]. The Journal of Physiology, 1980, 302: 323–333. doi: 10.1113/jphysiol.1980.sp013245
    [6] RASOR J S, ZLOTTA A R, EDWARDS S D, et al. TransUrethral Needle Ablation (TUNA): Thermal gradient mapping and comparison of lesion size in a tissue model and in patients with benign prostatic hyperplasia[J]. European Urology, 1993, 24(3): 411–414. doi: 10.1159/000474339
    [7] BAGAVATHIAPPAN S, SARAVANAN T, PHILIP J, et al. Investigation of peripheral vascular disorders using thermal imaging[J]. The British Journal of Diabetes & Vascular Disease, 2008, 8(2): 102–104.
    [8] BAGAVATHIAPPAN S, SARAVANAN T, PHILIP J, et al. Infrared thermal imaging for detection of peripheral vascular disorders[J]. Journal of Medical Physics, 2009, 34(1): 43–47. doi: 10.4103/0971-6203.48720
    [9] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]. IEEE International Conference on Computer Vision, Shenzhen, China, 2017: 2961–2969. doi: 10.1109/TPAMI.2018.2844175.
    [10] BOLYA D, ZHOU Chong, XIAO Fanyi, et al. YOLACT++: Better real-time instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, To be published. doi: 10.1109/TPAMI.2020.3014297
    [11] LEE Y and PARK J. CenterMask: Real-time anchor-free instance segmentation[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13903–13912.
    [12] XIE Enze, SUN Peize, SONG Xiaoge, et al. PolarMask: Single shot instance segmentation with polar representation[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 12190–12199.
    [13] BENINI S, KHAN K, LEONARDI R, et al. Face analysis through semantic face segmentation[J]. Signal Processing: Image Communication, 2019, 74: 21–31. doi: 10.1016/j.image.2019.01.005
    [14] GHIASS R S, ARANDJELOVI? O, BENDADA A, et al. Infrared face recognition: A comprehensive review of methodologies and databases[J]. Pattern Recognition, 2014, 47(9): 2807–2824. doi: 10.1016/j.patcog.2014.03.015
    [15] YANG Changcai, ZHOU Huabing, SUN Sheng, et al. Good match exploration for infrared face recognition[J]. Infrared Physics & Technology, 2014, 67: 111–115.
    [16] BUDZAN S and WY?GOLIK R. Face and eyes localization algorithm in thermal images for temperature measurement of the inner canthus of the eyes[J]. Infrared Physics & Technology, 2013, 60: 225–234.
    [17] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [18] ZHOU Xingyi, WANG Dequan, and KR?HENBüHL P. Objects as points[C]. IEEE Conference on Computer Vision and Pattern Recognition, Los Angeles, 2019: 2678–2689.
    [19] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19.
    [20] PARK J, WOO S, LEE J Y, et al. BAM: Bottleneck attention module[C]. European Conference on Computer Vision, Munich, Germany, 2018: 68–86.
  • 加載中
圖(5) / 表(5)
計(jì)量
  • 文章訪問數(shù):  1122
  • HTML全文瀏覽量:  917
  • PDF下載量:  113
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2020-10-09
  • 修回日期:  2021-04-22
  • 網(wǎng)絡(luò)出版日期:  2021-07-15
  • 刊出日期:  2021-12-21

目錄

    /

    返回文章
    返回