一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

橢圓曲線Diffie-Hellman密鑰交換協(xié)議的比特安全性研究

魏偉 陳佳哲 李丹 張寶峰

魏偉, 陳佳哲, 李丹, 張寶峰. 橢圓曲線Diffie-Hellman密鑰交換協(xié)議的比特安全性研究[J]. 電子與信息學(xué)報(bào), 2020, 42(8): 1820-1827. doi: 10.11999/JEIT190845
引用本文: 魏偉, 陳佳哲, 李丹, 張寶峰. 橢圓曲線Diffie-Hellman密鑰交換協(xié)議的比特安全性研究[J]. 電子與信息學(xué)報(bào), 2020, 42(8): 1820-1827. doi: 10.11999/JEIT190845
Wei WEI, Jiazhe CHEN, Dan LI, Baofeng ZHANG. Research on the Bit Security of Elliptic Curve Diffie-Hellman[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1820-1827. doi: 10.11999/JEIT190845
Citation: Wei WEI, Jiazhe CHEN, Dan LI, Baofeng ZHANG. Research on the Bit Security of Elliptic Curve Diffie-Hellman[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1820-1827. doi: 10.11999/JEIT190845

橢圓曲線Diffie-Hellman密鑰交換協(xié)議的比特安全性研究

doi: 10.11999/JEIT190845 cstr: 32379.14.JEIT190845
基金項(xiàng)目: 國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFB0800902),國(guó)家自然科學(xué)基金(61802439, U1936209)
詳細(xì)信息
    作者簡(jiǎn)介:

    魏偉:女,1985年生,助理研究員,研究方向?yàn)槊艽a學(xué)

    陳佳哲:男,1985年生,副研究員,研究方向?yàn)槊艽a學(xué)

    李丹:女,1991年生,講師,研究方向?yàn)閭?cè)信道分析技術(shù)

    張寶峰:男,1983年生,副研究員,研究方向?yàn)樾畔⒓夹g(shù)產(chǎn)品的安全測(cè)評(píng)

    通訊作者:

    張寶峰 zhangbf@itsec.gov.cn

  • 中圖分類號(hào): TP309

Research on the Bit Security of Elliptic Curve Diffie-Hellman

Funds: The National Key Research and Development Program of China (2016YFB0800902), The National Natural Science Foundation of China (61802439, U1936209)
  • 摘要: 橢圓曲線Diffie-Hellman密鑰交換協(xié)議與其他公鑰密碼體制相比,能夠以較小的密鑰尺寸來達(dá)到相同的安全強(qiáng)度,因此在實(shí)際應(yīng)用中對(duì)帶寬和存儲(chǔ)的要求較低,從而在很多計(jì)算資源受限的環(huán)境中有更多應(yīng)用價(jià)值。該文從理論和應(yīng)用角度,評(píng)估該類型協(xié)議共享密鑰建立過程中的部分信息泄漏對(duì)安全性的威脅至關(guān)重要?;陔[藏?cái)?shù)問題和格分析技術(shù),該文討論了橢圓曲線Diffie-Hellman密鑰交換協(xié)議的比特安全性,啟發(fā)式地證明了橢圓曲線Diffie-Hellman共享密鑰的x坐標(biāo)的中間11/12 bit的計(jì)算困難性近似于恢復(fù)整個(gè)密鑰。進(jìn)一步地,給出了信息泄露量與泄漏位置的顯式關(guān)系式。該文的研究結(jié)果放松了對(duì)泄露比特位置的限制,更加符合應(yīng)用場(chǎng)景,顯著改進(jìn)了以往工作中得出的結(jié)論。
  • 表  1  主要符號(hào)對(duì)照表

    符號(hào)代表意義
    ${\mathbb{R}^m}$$m$維實(shí)數(shù)向量空間
    $\mathbb{Z}$整數(shù)集
    ${\mathbb{F}_p}$$p$元有限域
    $\mathbb{E}({\mathbb{F}_p})$橢圓曲線$\mathbb{E}$在${\mathbb{F}_p}$中的有理點(diǎn)群
    $\parallel \cdot \parallel $歐幾里得范數(shù)
    ${\rm{det}}(L)$格$L$的基本域體積
    ${\lambda _1}(L)$格$L$的最短格向量的長(zhǎng)度
    ${{{B}}^{\rm{T}}}$矩陣${{B}}$的轉(zhuǎn)置矩陣
    下載: 導(dǎo)出CSV
  • KOBLITZ N. Elliptic curve cryptosystems[J]. Mathematics of Computation, 1987, 48(177): 203–209. doi: 10.1090/S0025-5718-1987-0866109-5
    MILLER V S. Use of elliptic curves in cryptography[C]. Proceedings of Conference on the Theory and Application of Cryptographic Techniques, California, USA, 1986: 417–426.
    BONEH D and VENKATESAN R. Hardness of computing the most significant bits of secret keys in Diffie-Hellman and related schemes[C]. The 16th Annual International Cryptology Conference, California, USA, 1996: 129–142.
    LIU Mingjie, CHEN Jiazhe, and LI Hexin. Partially known nonces and fault injection attacks on SM2 signature algorithm[C]. The 9th International Conference on Information Security and Cryptology, Guangzhou, China, 2014: 343–358.
    NGUYEN P Q and SHPARLINSKI I E. The insecurity of the elliptic curve digital signature algorithm with partially known nonces[J]. Designs, Codes and Cryptography, 2003, 30(2): 201–217. doi: 10.1023/A:1025436905711
    FAN Shuqin, WANG Wenbo, and CHENG Qingfeng. Attacking OpenSSL implementation of ECDSA with a few signatures[C]. 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016: 1505–1515.
    GANJI F, KR?MER J, SEIFERT J P, et al. Lattice basis reduction attack against physically unclonable functions[C]. The 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, USA, 2015: 1070–1080.
    BREITNER J and HENINGER N. Biased nonce sense: lattice attacks against weak ECDSA signatures in cryptocurrencies[J]. Financial Cryptography and Data Security, 2019: 3–20.
    MOGHUMI D, SUNAR B, EISENBARTH T, et al. TPM-FAIL: TPM meets timing and lattice attacks[J]. arXiv: 2019, 1911.05673.
    BONEH D, HALEVI S, and HOWGRAVE-GRAHAM N. The modular inversion hidden number problem[C]. The 7th International Conference on the Theory and Application of Cryptology and Information Security, Gold Coast, Australia, 2001: 36–51.
    XU Jun, SARKAR S, HU Lei, et al. New results on modular inversion hidden number problem and inversive congruential generator[C]. The 39th Annual International Cryptology Conference, Santa Barbara, USA, 2019: 297–321.
    SHANI B. On the bit security of elliptic curve Diffie-Hellman[C]. The 20th IACR International Conference on Practice and Theory in Public-Key Cryptography, Amsterdam, The Netherlands, 2017: 361–387.
    XU Jun, HU Lei, and SARKAR S. Cryptanalysis of elliptic curve hidden number problem from PKC 2017[J]. Designs, Codes and Cryptography, 2020, 88(2): 341–361. doi: 10.1007/s10623-019-00685-y
    HLAVá? M and ROSA T. Extended hidden number problem and its cryptanalytic applications[C]. The 13th International Workshop on Selected Areas in Cryptography, Montreal, Canada, 2007: 114–133.
    WEI Wei, CHEN Jiazhe, LI Dan, et al. Partially known information attack on SM2 key exchange protocol[J]. Science China Information Sciences, 2019, 62(3): 032105. doi: 10.1007/s11432-018-9515-9
    張江, 范淑琴. 關(guān)于非對(duì)稱含錯(cuò)學(xué)習(xí)問題的困難性研究[J]. 電子與信息學(xué)報(bào), 2020, 42(2): 327–332. doi: 10.11999/JEIT190685

    ZHANG Jiang and FAN Shuqin. On the hardness of the asymmetric learning with errors problem[J]. Journal of Electronics &Information Technology, 2020, 42(2): 327–332. doi: 10.11999/JEIT190685
    NGUYEN P Q and SHPARLINSKI I E. The insecurity of the digital signature algorithm with partially known nonces[J]. Journal of Cryptology, 2002, 15(3): 151–176. doi: 10.1007/s00145-002-0021-3
    謝天元, 李昊宇, 朱熠名, 等. FatSeal: 一種基于格的高效簽名算法[J]. 電子與信息學(xué)報(bào), 2020, 42(2): 333–340. doi: 10.11999/JEIT190678

    XIE Tianyuan, LI Haoyu, ZHU Yiming, et al. FatSeal: An efficient lattice-based signature algorithm[J]. Journal of Electronics &Information Technology, 2020, 42(2): 333–340. doi: 10.11999/JEIT190678
    LENSTRA A K, LENSTRA H W JR, and LOVáSZ L. Factoring polynomials with rational coefficients[J]. Mathematische Annalen, 1982, 261(4): 515–534. doi: 10.1007/BF01457454
    SCHNORR C P. A hierarchy of polynomial time lattice basis reduction algorithms[J]. Theoretical Computer Science, 1987, 53(2/3): 201–224.
    MICCIANCIO D and GOLDWASSER S. Complexity of Lattice Problems: A Cryptographic Perspective[M]. Boston, USA: Kluwer Academic Publishers, 2002.
    NGUYEN P Q. Hermite’s Constant and Lattice Algorithms[M]. NGUYEN P Q and VALLéE B. The LLL Algorithm: Survey and Applications. Berlin, Germany: Springer, 2009: 19–69.
    GAMA N, NGUYEN P Q, and REGEV O. Lattice enumeration using extreme pruning[C]. The 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, France, 2010: 257–278.
    AONO Y and NGUYEN P Q. Random sampling revisited: Lattice enumeration with discrete pruning[C]. The 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, 2017: 65–102.
  • 加載中
表(1)
計(jì)量
  • 文章訪問數(shù):  3988
  • HTML全文瀏覽量:  1561
  • PDF下載量:  145
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-11-01
  • 修回日期:  2020-04-16
  • 網(wǎng)絡(luò)出版日期:  2020-04-24
  • 刊出日期:  2020-08-18

目錄

    /

    返回文章
    返回