基于能量誤差的人體有限元模型網(wǎng)格剖分優(yōu)化研究
doi: 10.11999/JEIT190765 cstr: 32379.14.JEIT190765
-
1.
福州大學(xué)物理與信息工程學(xué)院 福州 350116
-
2.
福建省媒體信息智能處理與無線傳輸重點(diǎn)實驗室 福州 350116
Research on Mesh Generation Optimization of Finite Element Model of Human Body Based on Energy Error
-
1.
College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China
-
2.
Key Laboratory of Media Intelligence and Communication, Fujian Province, Fuzhou 350116, China
-
摘要: 網(wǎng)格剖分是有限元建模分析過程中最重要,也是工作量最大的環(huán)節(jié),直接影響有限元分析的精度和時間。該文在研究網(wǎng)格自適應(yīng)剖分及有限元離散誤差的基礎(chǔ)上,在高壓輸電場環(huán)境中建立不同復(fù)雜度的3維人體模型。通過對人體模型自適應(yīng)網(wǎng)格剖分和手動網(wǎng)格剖分電場仿真結(jié)果的對比,分析能量誤差變化的趨勢,從而指導(dǎo)人體模型的建立及最佳剖分尺寸的設(shè)置。該文的研究成果,對其它有限元剖分方案的優(yōu)化研究具有一定參考意義。
-
關(guān)鍵詞:
- 能量誤差 /
- 有限元分析 /
- 網(wǎng)格剖分 /
- 人體模型 /
- 電場仿真
Abstract: Meshing is the most important part of the finite element modeling and analysis process, and it also has the largest workload, which directly affects the accuracy and time of the finite element analysis. Based on the research of adaptive meshing and finite element discrete errors, three-dimensional human body models of different complexity are established in the environment of high-voltage power transmission fields. By comparing the results of the electric field simulation between the adaptive meshing of the human body model and the manual meshing, the trend of energy error changes is analyzed, so as to guide the establishment of the human body model and the setting of the optimal mesh size.The research results have certain reference significance to the optimization research of other finite element splitting schemes. -
表 1 人體模型尺寸(m)
人體模型I 人體模型II 人體模型III 腳 身體 脖子 頭 腳 身體 手臂 脖子 頭 半徑 0.28 0.19 0.24 0.10 0.17 0.05 0.12 0.03 0.04 0.20 高度 1.71 0.70 0.65 0.08 無 0.80 0.70 0.75 0.08 無 下載: 導(dǎo)出CSV
表 2 不同人體模型的方差和自適應(yīng)網(wǎng)格剖分能量誤差
人體模型類型 人體模型I 人體模型II 人體模型III 能量誤差(%) 21.0735 22.4244 26.8348 方差(m2) 0 0.036 0.050 下載: 導(dǎo)出CSV
表 3 網(wǎng)格尺寸0.2 m和0.5 m的模型網(wǎng)格數(shù)變化
人體模型I 人體模型II 人體模型III 全局網(wǎng)格數(shù) 網(wǎng)格尺寸0.2 m 281086 282154 285858 網(wǎng)格尺寸0.5 m 277204 280179 283806 網(wǎng)格數(shù)差 全局網(wǎng)格數(shù)差 3882 1975 2052 人體網(wǎng)格數(shù) 網(wǎng)格尺寸0.2 m 2646 2769 4987 網(wǎng)格尺寸0.5 m 566 1579 3615 網(wǎng)格數(shù)差 人體網(wǎng)格數(shù)差 2080 1190 1372 下載: 導(dǎo)出CSV
-
沈丹丹, 胡萬曉, 茍進(jìn)勝. 木托盤有限元分析精度的影響因素[J]. 包裝工程, 2018, 39(17): 12–18. doi: 10.19554/j.cnki.1001-3563.2018.17.003SHEN Dandan, HU Wanxiao, and GOU Jinsheng. Factors affecting the precision of finite element analysis of wooden pallet[J]. Packaging Engineering, 2018, 39(17): 12–18. doi: 10.19554/j.cnki.1001-3563.2018.17.003 葉志紅, 周海京, 劉強(qiáng). 屏蔽腔內(nèi)任意高度線纜端接TVS管電路的電磁耦合時域分析[J]. 電子與信息學(xué)報, 2018, 40(4): 1007–1011. doi: 10.11999/JEIT170615YE Zhihong, ZHOU Haijing, and LIU Qiang. Time domain coupling analysis for the arbitrary height cable terminated with TVS circuit in shield cavity[J]. Journal of Electronics &Information Technology, 2018, 40(4): 1007–1011. doi: 10.11999/JEIT170615 JIN Gefei, WEI Hai, CHEN Danlei, et al. Finite element meshing of complex tailings dam based on Hypermesh software[J]. China Water Transport (The Second Half) , 2019, 19(8): 96–97. 王世杰, 常延貞. 一類拋物最優(yōu)控制問題的有限元誤差估計[J]. 北京化工大學(xué)學(xué)報: 自然科學(xué)版, 2018, 45(6): 106–110. doi: 10.13543/j.bhxbzr.2018.06.017WANG Shijie and CHANG Yanzhen. Error estimates of the finite element method for a class of parabolic optimal control problems[J]. Journal of Beijing University of Chemical Technology:Natural Science Edition, 2018, 45(6): 106–110. doi: 10.13543/j.bhxbzr.2018.06.017 TURCKE D J and MCNEICE G M. Guidelines for selecting finite element grids based on an optimization study[J]. Computers & Structures, 1974, 4(3): 499–519. BABU?KA I and RHEINBOLDT W C. A-Posteriori error estimates for the finite element method[J]. International Journal for Numerical Methods in Engineering, 1978, 12(10): 1597–1615. doi: 10.1002/nme.1620121010 ZIENKIEWICZ O C and ZHU J Z. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique[J]. International Journal for Numerical Methods in Engineering, 1992, 33(7): 1331–1364. doi: 10.1002/nme.1620330702 AINSWORTH M, ZHU J Z, CRAIG A W, et al. Analysis of the Zienkiewicz-Zhu a-posteriori error estimator in the finite element method[J]. International Journal for Numerical Methods in Engineering, 1989, 28(9): 2161–2174. doi: 10.1002/nme.1620280912 FENG Kang. Finite element method[J]. Mathematics in Practice and Theory, 1974(4): 54–61. LI Xiangrong, ZHANG Weiwei, and NIE Yufeng. Superconvergence analysis of adaptive finite element method based on the bubble-type mesh generation[J]. Applied Mathematics Letters, 2019, 98: 322–328. doi: 10.1016/j.aml.2019.06.034 朱月風(fēng), 張洪亮, 張乘源, 等. 簡化擴(kuò)展有限元法精度的驗證及在DCT試驗中的應(yīng)用[J]. 武漢大學(xué)學(xué)報: 工學(xué)版, 2019, 52(3): 216–222. doi: 10.14188/j.1671-8844.2019-03-005ZHU Yuefeng, ZHANG Hongliang, ZHANG Chengyuan, et al. Accuracy verification of simplified XFEM and its application to DCT test[J]. Engineering Journal of Wuhan University, 2019, 52(3): 216–222. doi: 10.14188/j.1671-8844.2019-03-005 蘇志敏, 閆毅志, 董衛(wèi), 等. 特高拱壩有限元網(wǎng)格尺寸與離散誤差分析[C]. 第九屆南方計算力學(xué)學(xué)術(shù)交流會, 合肥, 2013: 246–250. doi: 10.19636/j.cnki.cjsm42-1250/o3.2014.s1.042.SU Zhimin, YAN Yizhi, DONG Wei, et al. Analysis on finite element mesh size and discretization error for super-high arch dam[C]. The 9th South Computational Mechanics Academic Exchange Conference, Hefei, China, 2013: 246–250. doi: 10.19636/j.cnki.cjsm42-1250/o3.2014.s1.042. 劉建濤, 杜平安, 黃明鏡, 等. 曲面薄殼有限元離散誤差分析和修正方法研究[J]. 系統(tǒng)仿真學(xué)報, 2010, 22(10): 2281–2286. doi: 10.16182/j.cnki.joss.2010.10.006LIU Jiantao, DU Ping’an, HUANG Mingjing, et al. Discrete error analysis and correction method of finite element for curved thin-walled structures[J]. Journal of System Simulation, 2010, 22(10): 2281–2286. doi: 10.16182/j.cnki.joss.2010.10.006 宣楊, 王旭, 劉承安, 等. 不完全喬列斯基分解共軛梯度法在磁感應(yīng)成像三維有限元正問題中的應(yīng)用[J]. 電子與信息學(xué)報, 2016, 38(1): 187–194. doi: 10.11999/JEIT150437XUAN Yang, WANG Xu, LIU Cheng’an, et al. Incomplete Cholesky conjugate gradient method for the three-dimensional forward problem in magnetic induction tomography using finite element method[J]. Journal of Electronics &Information Technology, 2016, 38(1): 187–194. doi: 10.11999/JEIT150437 魏宏安, 吳小清. 基于Maxwell有限元分析的高壓輸電線路安全距離研究[J]. 電氣開關(guān), 2018, 56(5): 86–90. doi: 10.3969/j.issn.1004-289X.2018.05.020WEI Hong’an and WU Xiaoqing. Research on safety distance of high voltage transmission lines based on Maxwell’s finite element analysis[J]. Electric Switcher, 2018, 56(5): 86–90. doi: 10.3969/j.issn.1004-289X.2018.05.020 -