一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于深度神經(jīng)網(wǎng)絡(luò)的Morse碼自動譯碼算法

游凌 李偉浩 張文林 王科人

游凌, 李偉浩, 張文林, 王科人. 基于深度神經(jīng)網(wǎng)絡(luò)的Morse碼自動譯碼算法[J]. 電子與信息學(xué)報, 2020, 42(11): 2643-2648. doi: 10.11999/JEIT190658
引用本文: 游凌, 李偉浩, 張文林, 王科人. 基于深度神經(jīng)網(wǎng)絡(luò)的Morse碼自動譯碼算法[J]. 電子與信息學(xué)報, 2020, 42(11): 2643-2648. doi: 10.11999/JEIT190658
Ling YOU, Weihao LI, Wenlin ZHANG, Keren WANG. Automatic Decoding Algorithm of Morse Code Based on Deep Neural Network[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2643-2648. doi: 10.11999/JEIT190658
Citation: Ling YOU, Weihao LI, Wenlin ZHANG, Keren WANG. Automatic Decoding Algorithm of Morse Code Based on Deep Neural Network[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2643-2648. doi: 10.11999/JEIT190658

基于深度神經(jīng)網(wǎng)絡(luò)的Morse碼自動譯碼算法

doi: 10.11999/JEIT190658 cstr: 32379.14.JEIT190658
基金項目: 國家自然科學(xué)基金(61403415),中國博士后科學(xué)基金(2016M602975)
詳細信息
    作者簡介:

    游凌:男,1971年生,博士,研究員,研究方向為信號分析

    李偉浩:男,1996年生,碩士生,研究方向為深度學(xué)習(xí)、信號分析

    張文林:男,1982年生,博士,副教授,研究方向為語音信號處理、語音識別、自然語言理解

    王科人:男,1986年生,博士,助理研究員,研究方向為信號分析、智能信息處理

    通訊作者:

    李偉浩 liweihao315@gmail.com

  • 中圖分類號: TN919.32

Automatic Decoding Algorithm of Morse Code Based on Deep Neural Network

Funds: The National Natural Science Foundation of China (61403415), The Postdoctoral Science Foundation of China(2016M602975)
  • 摘要: 在軍用和民用領(lǐng)域,Morse電報一直是一種重要的短波通信手段,但目前的自動譯碼算法仍然存在準確率低、無法適應(yīng)低信噪比和不穩(wěn)定的信號等問題。該文引入深度學(xué)習(xí)方法構(gòu)建了一個Morse碼自動識別系統(tǒng),神經(jīng)網(wǎng)絡(luò)模型由卷積神經(jīng)網(wǎng)絡(luò)、雙向長短時記憶網(wǎng)絡(luò)和連接時序分類層組成,結(jié)構(gòu)簡單,且能夠?qū)崿F(xiàn)端到端的訓(xùn)練。相關(guān)實驗表明,該譯碼系統(tǒng)在不同信噪比、不同碼速、信號出現(xiàn)頻率漂移以及不同發(fā)報手法引起的碼長偏差等情況下,均能取得較好的識別效果,性能優(yōu)于傳統(tǒng)的自動識別算法。
  • 圖  1  Morse信號時頻圖

    圖  2  神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)

    圖  3  特征序列與時頻圖的對應(yīng)

    圖  4  多模型識別準確率對比

    圖  5  多模型識別速度對比

    圖  6  出現(xiàn)頻率漂移和碼長偏差的Morse信號

    表  1  CNN層設(shè)置

    層名稱對應(yīng)核大小
    卷積層1(5, 5, 1, 32),步長=(1, 1)
    最大池化層1(2, 2),步長=(2, 2)
    卷積層2(5, 5, 32, 64),步長=(1, 1)
    最大池化層2(2, 16),步長=(2, 2)
    下載: 導(dǎo)出CSV

    表  2  數(shù)據(jù)集組成

    碼速(wpm)信噪比(dB)數(shù)目
    訓(xùn)練集25, 30, 4040, 30, 20, 10, 6, 3, –3, –6, –8, –1025000/50000
    驗證集25, 30, 4040, 30, 20, 10, 6, 3, –3, –6, –8, –102500
    測試集25, 30, 4040, 30, 20, 10, 6, 3, –3, –6, –8, –102500
    下載: 導(dǎo)出CSV

    表  3  頻率漂移和碼長偏差情況下的譯碼準確率

    字準確率(%)詞準確率(%)
    原始信號99.9299.65
    頻率漂移96.2391.71
    頻率漂移+碼長偏差95.8890.40
    下載: 導(dǎo)出CSV

    表  4  有無頻漂時去掉CNN前后譯碼性能

    迭代次數(shù)字準確率(%)詞準確率(%)
    有CNN,無頻漂2399.9299.65
    無CNN,無頻漂4292.7173.90
    有CNN,有頻漂2696.2391.71
    無CNN,有頻漂4763.1120.35
    下載: 導(dǎo)出CSV
  • DEY S, CHUGG K M, and BEEREL P A. Morse code datasets for machine learning[C]. The 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bangalore, India, 2018: 1–7. doi: 10.1109/icccnt.2018.8494011.
    SHIH C H and LUO C H. A Morse-code recognition system with LMS and matching algorithms for persons with disabilities[J]. International Journal of Medical Informatics, 1997, 44(3): 193–202. doi: 10.1016/s1386-5056(97)00020-8
    HSIEH M C, LUO C H, and MAO Chiwu. Unstable Morse code recognition with adaptive variable-ratio threshold prediction for physically disabled persons[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(3): 405–413. doi: 10.1109/86.867882
    YANG Chenghong, LUO C H, JEANG Y L, et al. A novel approach to adaptive Morse code recognition for disabled persons[J]. Mathematics and Computers in Simulation, 2000, 54(1/3): 23–32. doi: 10.1016/s0378-4754(00)00180-4
    GOLD B. Machine recognition of hand-sent Morse code[J]. IRE Transactions on Information Theory, 1959, 5(1): 17–24. doi: 10.1109/TIT.1959.1057478
    WU Chungmin and LUO Chinghsing. Morse code recognition system with fuzzy algorithm for disabled persons[J]. Journal of Medical Engineering & Technology, 2002, 26(5): 202–207. doi: 10.1080/03091900210156904
    WANG Yaqi, SUN Zhonghua, and JIA Kebin. An automatic decoding method for Morse signal based on clustering algorithm[C]. The 12th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kaohsiung, China, 2017: 235–242.
    王亞琦, 孫中華, 賈克斌. Morse報自動譯碼算法研究[J]. 信號處理, 2017, 33(11): 1451–1456.

    WANG Yaqi, SUN Zhonghua, and JIA Kebin. Research on automatic decoding algorithm of Morse telegraph[J]. Signal Processing, 2017, 33(11): 1451–1456.
    LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    WANG Xianyu, ZHAO Qi, MA Cheng, et al. Automatic Morse code recognition under low SNR[C]. 2018 International Conference on Mechanical, Electronic, Control and Automation Engineering (MECAE 2018), Qingdao, China, 2018: 46–51. doi: 10.2991/mecae-18.2018.46.
    SHI Baoguang, BAI Xiang, and YAO Cong. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(11): 2298–2304. doi: 10.1109/TPAMI.2016.2646371
    韋醒超. 摩爾斯短波無線通信系統(tǒng)的設(shè)計與實現(xiàn)研究[D]. [碩士論文], 湖南大學(xué), 2017.

    WEI Xingchao. Research on the design and implementation of Morse shortwave wireless communication system[D]. [Master dissertation], Hunan University, 2017.
    CABAL-YEPEZ E, GARCIA-RAMIREZ A G, ROMERO-TRONCOSO R J, et al. Reconfigurable monitoring system for time-frequency analysis on industrial equipment through STFT and DWT[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2): 760–771. doi: 10.1109/TII.2012.2221131
    SAINATH T N, KINGSBURY B, SAON G, et al. Deep convolutional neural networks for large-scale speech tasks[J]. Neural Networks, 2015, 64: 39–48. doi: 10.1016/j.neunet.2014.08.005
    GRAVES A and SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18(5/6): 602–610. doi: 10.1016/j.neunet.2005.06.042
    GRAVES A, FERNáNDEZ S, and GOMEZ F. Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks[C]. The 23rd International Conference on Machine Learning, Pittsburgh, USA, 2006: 369–367.
    劉宏哲, 楊少鵬, 袁家政, 等. 基于單一神經(jīng)網(wǎng)絡(luò)的多尺度人臉檢測[J]. 電子與信息學(xué)報, 2018, 40(11): 2598–2605. doi: 10.11999/JEIT180163

    LIU Hongzhe, YANG Shaopeng, YUAN Jiazheng, et al. Multi-scale face detection based on single neural network[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2598–2605. doi: 10.11999/JEIT180163
  • 加載中
圖(6) / 表(4)
計量
  • 文章訪問數(shù):  4180
  • HTML全文瀏覽量:  1263
  • PDF下載量:  190
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-08-29
  • 修回日期:  2020-05-08
  • 網(wǎng)絡(luò)出版日期:  2020-05-28
  • 刊出日期:  2020-11-16

目錄

    /

    返回文章
    返回