土壤表面與置于其上組合目標復合電磁散射特性研究
doi: 10.11999/JEIT190645 cstr: 32379.14.JEIT190645
-
1.
延安大學物理與電子信息學院 延安 716000
-
2.
復旦大學電磁波信息科學教育部重點實驗室 上海 200433
基金項目: 國家自然科學基金(61861043, 61701428, 61801416),陜西省教育廳科研計劃項目(17JK0860),復旦大學電磁波信息科學教育部重點實驗室開放基金(EMW201910)
Study on the Characteristics of Composite Electromagnetic Scattering From Soil Surface and Combinatorial Target Placed on It
-
1.
School of Physics and Electronic Information, Yan’an University, Yan’an 716000, China
-
2.
Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China
Funds: The National Natural Science Foundation of China (61861043, 61701428, 61801416), The Scientific Research Projects of Shaanxi Education Department (17JK0860), The Open Foundation of Fudan University Key Laboratory for Information Science of Electromagnetic Waves (MoE) (EMW201910)
-
摘要: 為了滿足置于粗糙面之上組合目標測量和檢測的需要,該文分別采用Dobson半經驗模型和電介質復介電常數(shù)公式表示土壤介電常數(shù)的實部和虛部,應用指數(shù)型分布粗糙面和Monte Carlo方法模擬實際的土壤表面。通過與矩量法得到的計算結果比較,驗證了時域有限差分(FDTD)方法計算粗糙面與目標復合散射問題的有效性,進而運用該方法研究了土壤表面與置于其上組合目標的復合散射,得出了復合散射系數(shù)的角分布曲線。結果表明:復合散射系數(shù)隨散射角振蕩地變化,在鏡反射方向處發(fā)生散射增強效應;土壤表面高度起伏均方根越大,復合散射系數(shù)越大;相關長度越大,復合散射系數(shù)越??;濕度越大,復合散射系數(shù)越?。唤M合目標尺度、介電常數(shù)、入射角對復合散射系數(shù)影響比較復雜。該文結果可用于求解地、海粗糙面與置于其上任意目標的復合電磁散射問題,與其它數(shù)值計算方法相比較,采用時域有限差分方法既可獲得較高的準確性,同時又可減少計算時間和內存占用量。Abstract: In order to meet the needs of measuring and detecting combinatorial target placed on the rough surface, Dobson semi-empirical model and dielectric complex permittivity formula are used to represent the real and imaginary parts of the soil dielectric constant, the soil surface is simulated with the model of exponential distribution and Monte Carlo method. The strategy of the Finite Difference Time Domain (FDTD) method for calculating the composite scattering from rough surface with target and the modeling method are presented with their validity evaluated by the method of moment, then the composite scattering of soil surface and combinatorial target placed on it is studied by this method, the angular distribution curve of the composite scattering coefficient is obtained. The results show that the composite scattering coefficient oscillates with the scattering angle, and the scattering enhancement effect occurs in the mirror reflection direction; the larger the root mean square of the fluctuation of soil surface, the larger the composite scattering coefficient; the larger the correlation length, the smaller the composite scattering coefficient; the larger the soil moisture content, the smaller the composite scattering coefficient; the influence of the scale and dielectric constant of combinatorial target, incident angle on composite scattering coefficient is complex. The results obtained in this paper can be used to solve the composite electromagnetic scattering from rough land surface and rough sea surface with any target placed on it. Compared with other numerical methods, the finite difference time domain method can not only obtain higher accuracy, but also reduce the calculation time and the amount of memory occupying.
-
TSANG L, LIAO T, TAN Shurun, et al. Rough surface and volume scattering of soil surfaces, ocean surfaces, snow, and vegetation based on numerical maxwell model of 3-D simulations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(11): 4703–4720. doi: 10.1109/JSTARS.2017.2722983 KIM S B, VAN ZYL J J, JOHNSON J T, et al. Surface soil moisture retrieval using the L-Band synthetic aperture radar onboard the soil moisture active-passive satellite and evaluation at core validation sites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 1897–1914. doi: 10.1109/TGRS.2016.2631126 KHANKHOJE U K and PADHY S. Stochastic solutions to rough surface scattering using the finite element method[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4170–4180. doi: 10.1109/TAP.2017.2715366 CHANG Wenmo, DING K H, TSANG L, et al. Microwave scattering and medium characterization for terrestrial snow with QCA-Mie and bicontinuous models: Comparison studies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3637–3648. doi: 10.1109/TGRS.2016.2522438 ALTUNCU Y. A numerical method for electromagnetic scattering by 3-D dielectric objects buried under 2-D locally rough surfaces[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8): 3634–3643. doi: 10.1109/TAP.2015.2438859 BELLEZ S, BOURLIER C, and KUBICKé G. 3-D scattering from a PEC target buried beneath a dielectric rough surface: An efficient PILE-ACA algorithm for solving a hybrid KA-EFIE formulation[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 5003–5014. doi: 10.1109/TAP.2015.2480123 XU Runwen, GUO Lixin, HE Hongjie, et al. A hybrid FEM/MoM technique for 3-D electromagnetic scattering from a dielectric object above a conductive rough surface[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 314–318. doi: 10.1109/LGRS.2015.2508500 SUN Hualong, TONG Chuangming, and ZOU Gaoxiang. High efficiency iterative solver for modeling composite rough surface electromagnetic scattering[J]. Electromagnetics, 2017, 37(2): 113–126. doi: 10.1080/02726343.2017.1279113 蘇翔, 吳振森, 王曉冰, 等. 稀疏矩陣規(guī)范網(wǎng)格結合物理雙網(wǎng)格分析介質海面散射特性與試驗驗證[J]. 電子與信息學報, 2016, 38(2): 486–494. doi: 10.11999/JEIT150401SU Xiang, WU Zhensen, WANG Xiaobing, et al. Backscatter analysis of lossy dielectric sea surface using SMCG-PBTG method—comparison with experimental data[J]. Journal of Electronics &Information Technology, 2016, 38(2): 486–494. doi: 10.11999/JEIT150401 王童, 童創(chuàng)明, 李西敏, 等. 海洋粗糙面全極化電磁散射特性研究[J]. 電子與信息學報, 2018, 40(6): 1412–1418. doi: 10.11999/JEIT170924WANG Tong, TONG Chuangming, LI Ximin, et al. Research on the full polarimetric electromagnetic scattering characteristics of ocean rough surface[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1412–1418. doi: 10.11999/JEIT170924 REN Xincheng, ZHAO Ye, YANG Pengju, et al. Electromagnetic scattering by multiple columns partially buried in a ground plane[J]. International Journal of Antennas and Propagation, 2017, 2017: 8101509. doi: 10.1155/2017/8101509 任新成, 朱小敏, 劉鵬. 大地土壤表面與淺埋多目標寬帶復合電磁散射研究[J]. 物理學報, 2016, 65(20): 204101. doi: 10.7498/aps.65.204101REN Xincheng, ZHU Xiaomin, and LIU Peng. Wide-band composite electromagnetic scattering from the earth soil surface and multiple targets shallowly buried[J]. Acta Physica Sinica, 2016, 65(20): 204101. doi: 10.7498/aps.65.204101 HE Hongjie and GUO Lixin. A multihybrid FE-BI-KA technique for 3-D electromagnetic scattering from a coated object above a conductive rough surface[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 2009–2013. doi: 10.1109/LGRS.2016.2621121 任新成, 朱小敏, 劉鵬. 雪層覆蓋土壤表面與半埋柱體寬帶復合散射FDTD方法[J]. 計算物理, 2017, 34(3): 327–334. doi: 10.3969/j.issn.1001-246X.2017.03.009REN Xincheng, ZHU Xiaomin, and LIU Peng. FDTD study on wide-band composite scattering from soil surface covered with snow and a partially buried column[J]. Chinese Journal of Computational Physics, 2017, 34(3): 327–334. doi: 10.3969/j.issn.1001-246X.2017.03.009 PEPLINSKI N R, ULABY F T, and DOBSON M C. Dielectric properties of soils in the 0.3-1.3-GHz range[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(3): 803–807. doi: 10.1109/36.387598 曾江源, 李震, 陳權, 等. SAR土壤水分反演中的介電常數(shù)實部簡化模型[J]. 紅外與毫米波學報, 2012, 31(6): 556–562. doi: 10.3724/SP.J.1010.2012.00556ZENG Jiangyuan, LI Zhen, CHEN Quan, et al. A simplified model of the real part of the soil complex permittivity for soil moisture estimation from SAR image[J]. Journal of Infrared and Millimeter Waves, 2012, 31(6): 556–562. doi: 10.3724/SP.J.1010.2012.00556 WANG J R and SCHMUGGE T J. An empirical model for the complex dielectric permittivity of soils as a function of water content[J]. IEEE Transactions on Geoscience and Remote Sensing, 1980, GE-18(4): 288–295. doi: 10.1109/TGRS.1980.350304 劉軍, 趙少杰, 蔣玲梅, 等. 微波波段土壤的介電常數(shù)模型研究進展[J]. 遙感信息, 2015, 30(1): 5–13, 70. doi: 10.3969/j.issn.1000-3177.2015.01.002LIU Jun, ZHAO Shaojie, JIANG Lingmei, et al. Research progress on dielectric constant model of soil at microwave frequency[J]. Remote Sensing Information, 2015, 30(1): 5–13, 70. doi: 10.3969/j.issn.1000-3177.2015.01.002 DUAN Xueyang and MOGHADDAM M. Full-wave electromagnetic scattering from rough surfaces with buried inhomogeneities[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3338–3353. doi: 10.1109/TGRS.2017.2669897 DARAWANKUL A and JOHNSON J T. Band-limited exponential correlation function for rough-surface scattering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5): 1198–1206. doi: 10.1109/tgrs.2007.893817 葛德彪, 閆玉波. 電磁波時域有限差分方法[M]. 3版. 西安: 西安電子科技大學出版社, 2011: 168–256.GE Debiao and YAN Yubo. Finite-Difference Time-Domain Method for Electromagnetic Waves[M]. 3rd ed. Xi’an: Xidian University Press, 2011: 168–256. -