一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

一種提升汽車(chē)?yán)走_(dá)方位角分辨率的成像處理方法

王同軍 吳鋒 徐偉

王同軍, 吳鋒, 徐偉. 一種提升汽車(chē)?yán)走_(dá)方位角分辨率的成像處理方法[J]. 電子與信息學(xué)報(bào), 2020, 42(8): 2037-2044. doi: 10.11999/JEIT190618
引用本文: 王同軍, 吳鋒, 徐偉. 一種提升汽車(chē)?yán)走_(dá)方位角分辨率的成像處理方法[J]. 電子與信息學(xué)報(bào), 2020, 42(8): 2037-2044. doi: 10.11999/JEIT190618
Tongjun WANG, Feng WU, Wei XU. A Novel Imaging Approach for Improving Azimuth Angular Resolution of Automotive Radars[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2037-2044. doi: 10.11999/JEIT190618
Citation: Tongjun WANG, Feng WU, Wei XU. A Novel Imaging Approach for Improving Azimuth Angular Resolution of Automotive Radars[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2037-2044. doi: 10.11999/JEIT190618

一種提升汽車(chē)?yán)走_(dá)方位角分辨率的成像處理方法

doi: 10.11999/JEIT190618 cstr: 32379.14.JEIT190618
基金項(xiàng)目: 河南省科技攻關(guān)項(xiàng)目(172102210450, 182102210533, 182102110160),河南省高等學(xué)校重點(diǎn)科研項(xiàng)目(18B520035)
詳細(xì)信息
    作者簡(jiǎn)介:

    王同軍:男,1985年生,講師,研究方向?yàn)榻煌ōh(huán)境智能感知、高速信息處理、物聯(lián)網(wǎng)應(yīng)用

    吳鋒:男,1981年生,講師,研究方向?yàn)樾盘?hào)處理、無(wú)線數(shù)據(jù)通信、物聯(lián)網(wǎng)技術(shù)

    徐偉:男,1983年生,教授,研究方向?yàn)樾麦w制雷達(dá)系統(tǒng)、微波遙感應(yīng)用

    通訊作者:

    王同軍 xy_wangtj@126.com

  • 中圖分類(lèi)號(hào): TN951

A Novel Imaging Approach for Improving Azimuth Angular Resolution of Automotive Radars

Funds: The Scientific and Technological Project in Henan Province (172102210450, 182102210533, 182102110160), The Key Scientific Research Projects in Institutions of Henan Higher Learning (18B520035)
  • 摘要:

    針對(duì)汽車(chē)?yán)走_(dá)方位角分辨率受方位向天線長(zhǎng)度限制的問(wèn)題,該文提出一種基于多波束實(shí)孔徑雷達(dá)圖像融合來(lái)提升汽車(chē)?yán)走_(dá)方位角分辨率的成像方法。該方法首先利用相控陣天線波束電掃描來(lái)獲取前視實(shí)孔徑雷達(dá)圖像,然后根據(jù)汽車(chē)?yán)走_(dá)成像幾何關(guān)系通過(guò)多張多角度實(shí)孔徑雷達(dá)圖像相參累加來(lái)提升雷達(dá)方位角分辨率。計(jì)算機(jī)仿真結(jié)果驗(yàn)證了該方法在提升汽車(chē)?yán)走_(dá)方位角分辨率的有效性。

  • 圖  1  提升方位分辨率的前視成像雷達(dá)工作方式示意圖

    圖  2  提升方位分辨率的前視成像雷達(dá)工作方式示意圖

    圖  3  成像處理流程圖

    圖  4  成像區(qū)域打網(wǎng)格處理示意圖

    圖  5  方位角分辨率仿真結(jié)果

    圖  6  點(diǎn)陣目標(biāo)場(chǎng)景設(shè)置

    圖  7  點(diǎn)陣目標(biāo)場(chǎng)景設(shè)置

    圖  8  前視成像雷達(dá)實(shí)孔徑點(diǎn)目標(biāo)插值處理后的等高線(10 m合成孔徑)

    圖  9  前視成像雷達(dá)高分辨合成孔徑點(diǎn)目標(biāo)插值處理后的等高線(15 m合成孔徑)

    圖  10  前視成像雷達(dá)高分辨合成孔徑點(diǎn)目標(biāo)插值處理后的等高線(5 m合成孔徑)

    表  1  車(chē)載前視成像雷達(dá)仿真參數(shù)

    參數(shù)數(shù)值
    雷達(dá)載頻96 GHz
    方位向天線長(zhǎng)度0.3 m
    系統(tǒng)PRF4000 Hz
    脈沖寬度80 μs
    信號(hào)帶寬1 GHz
    去斜接收后雷達(dá)信號(hào)采樣率150 MHz
    AD量化位數(shù)12位
    方位波束掃描角度范圍±15°
    雷達(dá)作用距離20~300 m
    波束躍度0.3°
    合成孔徑長(zhǎng)度10 m
    汽車(chē)速度15 m/s
    下載: 導(dǎo)出CSV

    表  2  點(diǎn)目標(biāo)聚焦性能指標(biāo)

    模式目標(biāo)距離向方位向
    分辨率(m)PSLR(dB)ISLR(dB)分辨率(°)PSLR(dB)ISLR(dB)
    實(shí)孔徑圖像P10.09–13.26–9.980.390–26.40–22.24
    P20.09–13.26–9.980.380–26.52–22.47
    P30.09–13.26–9.980.390–26.40–22.24
    實(shí)孔徑理論值P10.09–13.26–9.800.380–26.60–22.30
    P20.09–13.26–9.800.380–26.60–22.30
    P30.09–13.26–9.800.380–26.60–22.30
    合成處理圖像(10 m合成孔徑)P10.09–13.26–9.980.010–13.18–9.74
    P20.09–13.26–9.980.390–26.52–22.29
    P30.09–13.26–9.980.010–13.18–9.74
    合成處理理論值(10 m合成孔徑)P10.09–13.26–9.800.010–13.26–9.80
    P20.09–13.26–9.80 0.390–26.60–22.30
    P30.09–13.26–9.800.010–13.26–9.80
    合成處理圖像(15 m合成孔徑)P10.09–13.06–9.720.007–13.08–9.44
    P20.09–13.26–9.980.390–26.52–22.29
    P30.09–13.06–9.720.007–13.07–9.40
    合成處理理論值(15 m合成孔徑)P10.09–13.26–9.800.007–13.26–9.80
    P20.09–13.26–9.800.390–26.60–22.30
    P30.09–13.26–9.800.007–13.26–9.80
    下載: 導(dǎo)出CSV
  • XU Zhihuo, SHI Quan, SUN Ling, et al. Novel orthogonal random phase-coded pulsed radar for automotive application[J]. Journal of Radars, 2018, 7(3): 364–375. doi: 10.12000/JR17083
    PATOLE S M, TORLAK M, WANG Dan, et al. Automotive radars: A review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017, 34(2): 22–35. doi: 10.1109/MSP.2016.2628914
    KRONAUGE M and ROHLING H. New chirp sequence radar waveform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2870–2877. doi: 10.1109/TAES.2014.120813
    TAK J, JEONG E, and CHOI J. Metamaterial absorbers for 24-GHz automotive radar applications[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(6): 577–593. doi: 10.1080/09205071.2017.1297257
    GUO Kunyi, HOARE E G, JASTEH D, et al. Road edge recognition using the stripe hough transform from millimeter-wave radar images[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 825–833. doi: 10.1109/TITS.2014.2342875
    MAO Xuesong, INOUE D, MATSUBARA H, et al. Demonstration of in-car doppler laser radar at 1.55 μm for range and speed measurement[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 599–607. doi: 10.1109/TITS.2012.2230325
    LEE J E, LIM H S, JEONG S H, et al. Enhanced iron-tunnel recognition for automotive radars[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4412–4418. doi: 10.1109/TVT.2015.2460992
    KELLNER D, BARJENBRUCH M, KLAPPSTEIN J, et al. Tracking of extended objects with high-resolution Doppler radar[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5): 1341–1353. doi: 10.1109/TITS.2015.2501759
    WANG Xiao, XU Linhai, SUN Hongbin, et al. On-road vehicle detection and tracking using MMW radar and monovision fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7): 2075–2084. doi: 10.1109/TITS.2016.2533542
    WANG H N, HUANG Yingwei, and CHUN S J. Spatial diversity 24-GHz FMCW radar with ground effect compensation for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 965–973. doi: 10.1109/TVT.2016.2565608
    ASKELAND S A and EKMAN T. Tracking with a high-resolution 2D spectral estimation based automotive radar[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2418–2423. doi: 10.1109/TITS.2015.2407571
    LEE M S and KIM Y H. Design and performance of a 24-GHz switch-antenna array FMCW radar system for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2010, 59(5): 2290–2297. doi: 10.1109/TVT.2010.2045665
    HU Chenxi, LIU Yimin, MENG Huadong, et al. Randomized switched antenna array FMCW radar for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2014, 63(8): 3624–3641. doi: 10.1109/TVT.2014.2308895
    保錚, 邢孟道, 王彤. 雷達(dá)成像技術(shù)[M]. 北京: 電子工業(yè)出版社, 2005: 169–170.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 169–170.
    DEVADITHYA S, PEDROSS-ENGEL A, WATTS C M, et al. GPU-accelerated enhanced resolution 3-D SAR imaging with dynamic metamaterial antennas[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(12): 5096–5103. doi: 10.1109/TMTT.2017.2766060
    CHANG W Y, WU Mengche, CHANG Yanglang, et al. GPU acceleration of adaptive local kriging applied to retrieving slant-range surface motion maps[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4317–4325. doi: 10.1109/JSTARS.2018.2871877
    WIJAYASIRI A, BANERJEE T, RANKA S, et al. Dynamic data-driven SAR image reconstruction using multiple GPUs[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4326–4338. doi: 10.1109/JSTARS.2018.2873198
  • 加載中
圖(10) / 表(2)
計(jì)量
  • 文章訪問(wèn)數(shù):  3055
  • HTML全文瀏覽量:  1291
  • PDF下載量:  143
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-08-13
  • 修回日期:  2020-02-23
  • 網(wǎng)絡(luò)出版日期:  2020-03-21
  • 刊出日期:  2020-08-18

目錄

    /

    返回文章
    返回