一種提升汽車(chē)?yán)走_(dá)方位角分辨率的成像處理方法
doi: 10.11999/JEIT190618 cstr: 32379.14.JEIT190618
-
1.
信陽(yáng)農(nóng)林學(xué)院信息工程學(xué)院 信陽(yáng) 464000
-
2.
內(nèi)蒙古工業(yè)大學(xué)信息工程學(xué)院 呼和浩特 010051
A Novel Imaging Approach for Improving Azimuth Angular Resolution of Automotive Radars
-
1.
College of Information Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China
-
2.
College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
-
摘要:
針對(duì)汽車(chē)?yán)走_(dá)方位角分辨率受方位向天線長(zhǎng)度限制的問(wèn)題,該文提出一種基于多波束實(shí)孔徑雷達(dá)圖像融合來(lái)提升汽車(chē)?yán)走_(dá)方位角分辨率的成像方法。該方法首先利用相控陣天線波束電掃描來(lái)獲取前視實(shí)孔徑雷達(dá)圖像,然后根據(jù)汽車(chē)?yán)走_(dá)成像幾何關(guān)系通過(guò)多張多角度實(shí)孔徑雷達(dá)圖像相參累加來(lái)提升雷達(dá)方位角分辨率。計(jì)算機(jī)仿真結(jié)果驗(yàn)證了該方法在提升汽車(chē)?yán)走_(dá)方位角分辨率的有效性。
-
關(guān)鍵詞:
- 汽車(chē)?yán)走_(dá) /
- 前視成像 /
- 合成孔徑 /
- 后向投影算法
Abstract:As the azimuth angular resolution is limited by the antenna length in automotive radars, a novel imaging approach for improving azimuth angular resolution of automotive radars is proposed based on multi-beam real-aperture radar images combination processing. Firstly, the antenna beam of the phased array antenna is electronically scanned to obtain forward-looking real-aperture radar images. Afterwards, multiple real-aperture radar images are coherent accumulated according to the imaging geometry of automotive radar to improve azimuth angular resolution. Simulation results validate the proposed imaging approach to improve the azimuth angular resolution of automotive radar.
-
表 1 車(chē)載前視成像雷達(dá)仿真參數(shù)
參數(shù) 數(shù)值 雷達(dá)載頻 96 GHz 方位向天線長(zhǎng)度 0.3 m 系統(tǒng)PRF 4000 Hz 脈沖寬度 80 μs 信號(hào)帶寬 1 GHz 去斜接收后雷達(dá)信號(hào)采樣率 150 MHz AD量化位數(shù) 12位 方位波束掃描角度范圍 ±15° 雷達(dá)作用距離 20~300 m 波束躍度 0.3° 合成孔徑長(zhǎng)度 10 m 汽車(chē)速度 15 m/s 下載: 導(dǎo)出CSV
表 2 點(diǎn)目標(biāo)聚焦性能指標(biāo)
模式 目標(biāo) 距離向 方位向 分辨率(m) PSLR(dB) ISLR(dB) 分辨率(°) PSLR(dB) ISLR(dB) 實(shí)孔徑圖像 P1 0.09 –13.26 –9.98 0.390 –26.40 –22.24 P2 0.09 –13.26 –9.98 0.380 –26.52 –22.47 P3 0.09 –13.26 –9.98 0.390 –26.40 –22.24 實(shí)孔徑理論值 P1 0.09 –13.26 –9.80 0.380 –26.60 –22.30 P2 0.09 –13.26 –9.80 0.380 –26.60 –22.30 P3 0.09 –13.26 –9.80 0.380 –26.60 –22.30 合成處理圖像(10 m合成孔徑) P1 0.09 –13.26 –9.98 0.010 –13.18 –9.74 P2 0.09 –13.26 –9.98 0.390 –26.52 –22.29 P3 0.09 –13.26 –9.98 0.010 –13.18 –9.74 合成處理理論值(10 m合成孔徑) P1 0.09 –13.26 –9.80 0.010 –13.26 –9.80 P2 0.09 –13.26 –9.80 0.390 –26.60 –22.30 P3 0.09 –13.26 –9.80 0.010 –13.26 –9.80 合成處理圖像(15 m合成孔徑) P1 0.09 –13.06 –9.72 0.007 –13.08 –9.44 P2 0.09 –13.26 –9.98 0.390 –26.52 –22.29 P3 0.09 –13.06 –9.72 0.007 –13.07 –9.40 合成處理理論值(15 m合成孔徑) P1 0.09 –13.26 –9.80 0.007 –13.26 –9.80 P2 0.09 –13.26 –9.80 0.390 –26.60 –22.30 P3 0.09 –13.26 –9.80 0.007 –13.26 –9.80 下載: 導(dǎo)出CSV
-
XU Zhihuo, SHI Quan, SUN Ling, et al. Novel orthogonal random phase-coded pulsed radar for automotive application[J]. Journal of Radars, 2018, 7(3): 364–375. doi: 10.12000/JR17083 PATOLE S M, TORLAK M, WANG Dan, et al. Automotive radars: A review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017, 34(2): 22–35. doi: 10.1109/MSP.2016.2628914 KRONAUGE M and ROHLING H. New chirp sequence radar waveform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2870–2877. doi: 10.1109/TAES.2014.120813 TAK J, JEONG E, and CHOI J. Metamaterial absorbers for 24-GHz automotive radar applications[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(6): 577–593. doi: 10.1080/09205071.2017.1297257 GUO Kunyi, HOARE E G, JASTEH D, et al. Road edge recognition using the stripe hough transform from millimeter-wave radar images[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 825–833. doi: 10.1109/TITS.2014.2342875 MAO Xuesong, INOUE D, MATSUBARA H, et al. Demonstration of in-car doppler laser radar at 1.55 μm for range and speed measurement[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 599–607. doi: 10.1109/TITS.2012.2230325 LEE J E, LIM H S, JEONG S H, et al. Enhanced iron-tunnel recognition for automotive radars[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4412–4418. doi: 10.1109/TVT.2015.2460992 KELLNER D, BARJENBRUCH M, KLAPPSTEIN J, et al. Tracking of extended objects with high-resolution Doppler radar[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5): 1341–1353. doi: 10.1109/TITS.2015.2501759 WANG Xiao, XU Linhai, SUN Hongbin, et al. On-road vehicle detection and tracking using MMW radar and monovision fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7): 2075–2084. doi: 10.1109/TITS.2016.2533542 WANG H N, HUANG Yingwei, and CHUN S J. Spatial diversity 24-GHz FMCW radar with ground effect compensation for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 965–973. doi: 10.1109/TVT.2016.2565608 ASKELAND S A and EKMAN T. Tracking with a high-resolution 2D spectral estimation based automotive radar[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2418–2423. doi: 10.1109/TITS.2015.2407571 LEE M S and KIM Y H. Design and performance of a 24-GHz switch-antenna array FMCW radar system for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2010, 59(5): 2290–2297. doi: 10.1109/TVT.2010.2045665 HU Chenxi, LIU Yimin, MENG Huadong, et al. Randomized switched antenna array FMCW radar for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2014, 63(8): 3624–3641. doi: 10.1109/TVT.2014.2308895 保錚, 邢孟道, 王彤. 雷達(dá)成像技術(shù)[M]. 北京: 電子工業(yè)出版社, 2005: 169–170.BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 169–170. DEVADITHYA S, PEDROSS-ENGEL A, WATTS C M, et al. GPU-accelerated enhanced resolution 3-D SAR imaging with dynamic metamaterial antennas[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(12): 5096–5103. doi: 10.1109/TMTT.2017.2766060 CHANG W Y, WU Mengche, CHANG Yanglang, et al. GPU acceleration of adaptive local kriging applied to retrieving slant-range surface motion maps[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4317–4325. doi: 10.1109/JSTARS.2018.2871877 WIJAYASIRI A, BANERJEE T, RANKA S, et al. Dynamic data-driven SAR image reconstruction using multiple GPUs[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4326–4338. doi: 10.1109/JSTARS.2018.2873198 -