基于雙錯測度的極限學(xué)習(xí)機選擇性集成方法
doi: 10.11999/JEIT190617 cstr: 32379.14.JEIT190617
-
1.
合肥工業(yè)大學(xué)管理學(xué)院 合肥 230009
-
2.
過程優(yōu)化與智能決策教育部重點實驗室 合肥 230009
Selective Ensemble Method of Extreme Learning Machine Based on Double-fault Measure
-
1.
School of Management, Hefei University of Technology, Hefei 230009, China
-
2.
Key Laboratory of Process Optimization and Intelligent Decision-making, Ministry of Education, Hefei 230009, China
-
摘要: 極限學(xué)習(xí)機(ELM)具有學(xué)習(xí)速度快、易實現(xiàn)和泛化能力強等優(yōu)點,但單個ELM的分類性能不穩(wěn)定。集成學(xué)習(xí)可以有效地提高單個ELM的分類性能,但隨著數(shù)據(jù)規(guī)模和基ELM數(shù)目的增加,計算復(fù)雜度會大幅度增加,消耗大量的計算資源。針對上述問題,該文提出一種基于雙錯測度的極限學(xué)習(xí)機選擇性集成方法(DFSEE),同時從理論和實驗的角度進行了詳細(xì)分析。首先,運用bootstrap 方法重復(fù)抽取訓(xùn)練集,獲得多個訓(xùn)練子集,在ELM上進行獨立訓(xùn)練,得到多個具有較大差異性的基ELM,構(gòu)成基ELM池;其次,計算出每個基ELM的雙錯測度,將基ELM按照雙錯測度的大小進行升序排序;最后,采用多數(shù)投票算法,根據(jù)順序?qū)⒒鵈LM逐個累加集成,直至集成精度最優(yōu),即獲得基ELM最優(yōu)子集成,并分析了其理論基礎(chǔ)。在10個UCI數(shù)據(jù)集上的實驗結(jié)果表明,較其他方法使用了更小規(guī)模的基ELM,獲得了更高的集成精度,同時表明了其有效性和顯著性。
-
關(guān)鍵詞:
- 選擇性集成 /
- 雙錯測度 /
- 極限學(xué)習(xí)機
Abstract: Extreme Learning Machine (ELM) has unique advantages such as fast learning speed, simplicity of implementation, and excellent generalization performance. However, the performance of a single ELM is unstable in classification. Ensemble learning can effectively improve the classification ability of single ELMs, but it may incur the rapid increase in memory space and computational overheads as the increase of the data size and the number of ELMs. To address this issue, a Selective Ensemble approach of ELM based on Double-Fault measure (DFSEE) is proposed, and it is evaluated by theoretical and experimental analysis simultaneously. Firstly, multiple training subsets extracted from a training dataset are obtained employing the bootstrap sampling method, and an initial pool of base ELMs is constructed by independently training multiple ELMs on different training subsets; Secondly, the ELMs in pool are sorted in ascending order according to their double-fault measures of those ELMs. Finally, it starts with one ELM and grows the ensemble by adding new base ELMs according to the order, the final ensemble of ELMs can be achieved with the best classification ability, and the theoretical basis of DFSEE is analyzed. Experimental results on 10 benchmark classification tasks show that DFSEE can achieve better results with less number of ELMs by comparing with other approaches, and its validity and significance.-
Key words:
- Selective ensemble /
- Double-fault measure /
- Extreme Learning Machine (ELM)
-
表 1 兩個分類器的聯(lián)合分布
${f_i}({x_k}) = {y_k}$ ${f_i}({x_k}) \ne {y_k}$ ${f_j}({x_k}) = {y_k}$ $a$ $b$ ${f_j}({x_k}) \ne {y_k}$ $c$ $d$ 下載: 導(dǎo)出CSV
表 2 UCI數(shù)據(jù)集
數(shù)據(jù)集 實例個數(shù) 屬性個數(shù) 類別 Heart 270 13 2 Cleveland 303 13 5 Bupa 345 6 2 Wholesale 440 7 2 Diabetes 768 8 2 German 1000 20 2 QSAR 1055 41 2 CMC 1473 9 3 Spambase 4601 57 2 Wineq-w 4898 11 7 下載: 導(dǎo)出CSV
表 3 在不同規(guī)模基ELM (100, 200, 300)下的集成分類準(zhǔn)確率(%)
數(shù)據(jù)集 100 200 300 DFSEE 最高 平均 最低 DFSEE 最高 平均 最低 DFSEE 最高 平均 最低 Heart 80.48 75.00 63.60 51.14 82.48 76.33 63.63 49.24 82.24 76.57 63.68 48.57 Cleveland 57.01 55.87 48.66 38.86 57.61 56.62 48.68 38.11 57.91 56.82 48.68 37.71 Bupa 75.37 70.67 60.21 48.18 76.95 71.51 60.15 47.09 77.40 72.18 60.23 46.49 Wholesale 94.04 89.56 82.78 74.19 94.78 90.26 82.78 73.48 95.15 90.59 82.73 73.04 Diabetes 71.88 70.62 61.83 52.64 73.10 71.49 61.73 51.03 73.77 71.81 61.74 50.65 German 77.40 75.17 69.61 63.63 78.08 76.12 69.63 62.83 78.58 76.40 69.64 62.62 QSAR 86.26 82.67 74.45 65.63 87.78 83.63 74.52 64.92 88.28 83.89 74.49 63.98 CMC 62.99 60.45 54.21 46.57 63.41 61.03 54.25 45.92 63.88 61.33 54.23 45.46 Spambase 80.78 77.57 70.13 63.32 81.55 78.17 70.12 62.79 81.70 78.42 70.13 62.53 Wineq-w 51.38 50.80 46.97 44.52 51.73 51.03 46.94 44.21 51.90 51.20 46.94 44.07 下載: 導(dǎo)出CSV
表 4 在不同規(guī)?;鵈LM (100, 200, 300)下DFSEE與Bagging分類準(zhǔn)確率對比分析(%)
數(shù)據(jù)集 100 200 300 Bagging 本文DFSEE n Bagging 本文DFSEE n Bagging 本文DFSEE n Heart 72.10 80.48 13 71.67 82.48 11 71.71 82.24 11 Cleveland 49.25 57.01 4 49.25 57.61 6 49.25 57.91 6 Bupa 65.61 75.37 12 64.14 76.95 12 64.98 77.40 15 Wholesale 86.44 94.04 8 86.00 94.78 10 86.11 95.15 11 Diabetes 63.79 71.88 7 63.51 73.10 7 63.63 73.77 8 German 74.13 77.40 14 74.40 78.08 9 74.38 78.58 9 QSAR 80.22 86.26 9 80.41 87.78 8 80.47 88.28 9 CMC 58.22 62.99 9 58.44 63.41 12 58.45 63.88 13 Spambase 73.34 80.78 12 73.37 81.55 13 73.46 81.70 11 Wineq-w 46.58 51.38 8 46.57 51.73 11 46.56 51.90 14 下載: 導(dǎo)出CSV
表 5 與其他方法在集成精度(%)和集成規(guī)模方面對比分析(基ELM規(guī)模200)
數(shù)據(jù)集 本文DFSEE n AGOB n POBE n MOAG n EP-FP n SCG-P n Heart 82.48 11 74.14 49 77.52 96 74.86 43 74.38 95 75.24 38 Cleveland 57.61 6 54.43 22 51.09 132 50.85 25 49.25 95 56.25 1 Bupa 76.95 12 69.93 37 72.95 99 69.47 59 65.89 66 76.89 48 Wholesale 94.78 10 89.67 36 92.74 99 88.59 27 86.11 96 87.85 9 Diabetes 73.10 7 66.03 26 68.99 102 66.27 52 63.73 89 65.30 58 German 78.08 9 75.15 36 76.60 96 75.30 38 74.47 86 75.18 54 QSAR 87.78 8 83.48 24 84.37 100 83.94 32 80.43 88 82.02 37 CMC 63.41 12 59.63 47 60.92 103 59.67 51 58.46 97 59.51 67 Spambase 81.55 13 76.18 32 79.12 97 76.47 67 76.64 93 76.66 58 Wineq-w 51.73 11 50.37 23 49.48 93 48.10 34 48.60 96 50.98 46 下載: 導(dǎo)出CSV
表 6 與其他方法在運行時間方面的對比分析(s)
數(shù)據(jù)集 本文DFSEE AGOB POBE MOAG EP-FP SCG-P Heart 0.80 10.96 0.79 0.87 18.24 0.86 Cleveland 0.77 22.36 0.73 1.10 2.77 1.10 Bupa 0.86 13.97 0.85 0.95 41.26 0.95 Wholesale 1.16 17.26 1.15 1.27 21.97 1.26 Diabetes 1.29 17.95 1.28 1.40 30.40 1.39 German 1.79 12.58 1.78 1.86 11.58 1.86 QSAR 2.29 14.01 2.29 2.37 23.55 2.37 CMC 2.25 24.44 2.21 2.62 30.85 2.61 Spambase 8.54 43.86 8.52 8.80 110.46 8.78 Wineq-w 7.71 79.18 7.58 8.85 48.56 8.82 下載: 導(dǎo)出CSV
-
HUANG Guangbin, ZHU Qinyu, and SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489–501. doi: 10.1016/j.neucom.2005.12.126 YANG Yifan, ZHANG Hong, YUAN D, et al. Hierarchical extreme learning machine based image denoising network for visual Internet of Things[J]. Applied Soft Computing, 2019, 74: 747–759. doi: 10.1016/j.asoc.2018.08.046 吳超, 李雅倩, 張亞茹, 等. 用于表示級特征融合與分類的相關(guān)熵融合極限學(xué)習(xí)機[J]. 電子與信息學(xué)報, 2020, 42(2): 386–393. doi: 10.11999/JEIT190186WU Chao, LI Yaqian, ZHANG Yaru, et al. Correntropy-based fusion extreme learning machine for representation level feature fusion and classification[J]. Journal of Electronics &Information Technology, 2020, 42(2): 386–393. doi: 10.11999/JEIT190186 陸慧娟, 安春霖, 馬小平, 等. 基于輸出不一致測度的極限學(xué)習(xí)機集成的基因表達數(shù)據(jù)分類[J]. 計算機學(xué)報, 2013, 36(2): 341–348. doi: 10.3724/SP.J.1016.2013.00341LU Huijuan, AN Chunlin, MA Xiaoping, et al. Disagreement measure based ensemble of extreme learning machine for gene expression data classification[J]. Chinese Journal of Computers, 2013, 36(2): 341–348. doi: 10.3724/SP.J.1016.2013.00341 LAN Y, SOH Y C, and HUANG Guangbin. Ensemble of online sequential extreme learning machine[J]. Neurocomputing, 2009, 72(13/15): 3391–3395. doi: 10.1016/j.neucom.2009.02.013 KSIENIEWICZ P, KRAWCZYK B, and WO?NIAK M M. Ensemble of Extreme Learning Machines with trained classifier combination and statistical features for hyperspectral data[J]. Neurocomputing, 2018, 271: 28–37. doi: 10.1016/j.neucom.2016.04.076 李煒, 李全龍, 劉政怡. 基于加權(quán)的K近鄰線性混合顯著性目標(biāo)檢測[J]. 電子與信息學(xué)報, 2019, 41(10): 2442–2449. doi: 10.11999/JEIT190093LI Wei, LI Quanlong, and LIU Zhengyi. Salient object detection using weighted K-nearest neighbor linear blending[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2442–2449. doi: 10.11999/JEIT190093 YKHLEF H and BOUCHAFFRA D. An efficient ensemble pruning approach based on simple coalitional games[J]. Information Fusion, 2017, 34: 28–42. doi: 10.1016/j.inffus.2016.06.003 CAO Jingjing, LI Wenfeng, MA Congcong, et al. Optimizing multi-sensor deployment via ensemble pruning for wearable activity recognition[J]. Information Fusion, 2018, 41: 68–79. doi: 10.1016/j.inffus.2017.08.002 MARTíNEZ-MU?OZ G, HERNáNDEZ-LOBATO D, and SUáREZ A. An analysis of ensemble pruning techniques based on ordered aggregation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 245–259. doi: 10.1109/TPAMI.2008.78 MARTíNEZ-MU?OZ G and SUáREZ A. Pruning in ordered bagging ensembles[C]. The 23rd International Conference on Machine learning, New York, USA, 2006: 609-616. doi: 10.1145/1143844.1143921. GUO Li and BOUKIR S. Margin-based ordered aggregation for ensemble pruning[J]. Pattern Recognition Letters, 2013, 34(6): 603–609. doi: 10.1016/j.patrec.2013.01.003 DAI Qun, ZHANG Ting, and LIU Ningzhong. A new reverse reduce-error ensemble pruning algorithm[J]. Applied Soft Computing, 2015, 28: 237–249. doi: 10.1016/j.asoc.2014.10.045 ZHOU Zhihua, WU Jianxin, and TANG Wei. Ensembling neural networks: Many could be better than all[J]. Artificial Intelligence, 2002, 137(1/2): 239–263. doi: 10.1016/S0004-3702(02)00190-X CAVALCANTI G D C, OLIVEIRA L S, MOURA T J M, et al. Combining diversity measures for ensemble pruning[J]. Pattern Recognition Letters, 2016, 74: 38–45. doi: 10.1016/j.patrec.2016.01.029 MAO Shasha, CHEN Jiawei, JIAO Licheng, et al. Maximizing diversity by transformed ensemble learning[J]. Applied Soft Computing, 2019, 82: 105580. doi: 10.1016/j.asoc.2019.105580 TANG E K, SUGANTHAN P N, and YAO Xin. An analysis of diversity measures[J]. Machine Learning, 2006, 65(1): 247–271. doi: 10.1007/s10994-006-9449-2 GIACINTO G and ROLI F. Design of effective neural network ensembles for image classification purposes[J]. Image and Vision Computing, 2001, 19(9/10): 699–707. doi: 10.1016/S0262-8856(01)00045-2 FUSHIKI T. Estimation of prediction error by using K-fold cross-validation[J]. Statistics and Computing, 2011, 21(2): 137–146. doi: 10.1007/s11222-009-9153-8 ZHOU Hongfa, ZHAO Xuehan, and WANG Xiao. An effective ensemble pruning algorithm based on frequent patterns[J]. Knowledge-Based Systems, 2014, 56: 79–85. doi: 10.1016/j.knosys.2013.10.024 -