一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于改進(jìn)Mask R-CNN的模糊圖像實例分割的研究

陳衛(wèi)東 郭蔚然 劉宏煒 朱奇光

陳衛(wèi)東, 郭蔚然, 劉宏煒, 朱奇光. 基于改進(jìn)Mask R-CNN的模糊圖像實例分割的研究[J]. 電子與信息學(xué)報, 2020, 42(11): 2805-2812. doi: 10.11999/JEIT190604
引用本文: 陳衛(wèi)東, 郭蔚然, 劉宏煒, 朱奇光. 基于改進(jìn)Mask R-CNN的模糊圖像實例分割的研究[J]. 電子與信息學(xué)報, 2020, 42(11): 2805-2812. doi: 10.11999/JEIT190604
Weidong CHEN, Weiran GUO, Hongwei LIU, Qiguang ZHU. Research on Fuzzy Image Instance Segmentation Based on Improved Mask R-CNN[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2805-2812. doi: 10.11999/JEIT190604
Citation: Weidong CHEN, Weiran GUO, Hongwei LIU, Qiguang ZHU. Research on Fuzzy Image Instance Segmentation Based on Improved Mask R-CNN[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2805-2812. doi: 10.11999/JEIT190604

基于改進(jìn)Mask R-CNN的模糊圖像實例分割的研究

doi: 10.11999/JEIT190604 cstr: 32379.14.JEIT190604
基金項目: 國家自然科學(xué)基金(61773333),河北省教育廳高等學(xué)??萍加媱澲攸c項目(ZD2018234)
詳細(xì)信息
    作者簡介:

    陳衛(wèi)東:男,1971年生,教授,研究方向為智能算法及應(yīng)用

    郭蔚然:男,1992年生,碩士生,研究方向為深度學(xué)習(xí)圖像分割

    劉宏煒:男,1995年生,碩士生,研究方向為深度學(xué)習(xí)圖像分割

    朱奇光:男,1978年生,副教授,研究方向為智能機(jī)器人檢測與控制

    通訊作者:

    朱奇光 zhu7880@ysu.edu.cn

  • 中圖分類號: TN911.73

Research on Fuzzy Image Instance Segmentation Based on Improved Mask R-CNN

Funds: The National Natural Science Foundation of China (61773333), The Key Project of Science and Technology Plan of Colleges and Universities of Hebei Provincial Department of Education (ZD2018234)
  • 摘要: Mask R-CNN是現(xiàn)階段實例分割相對成熟的方法,針對Mask R-CNN算法當(dāng)中還存在的分割邊界精度以及對于模糊圖片魯棒性較差等問題,該文提出一種基于改進(jìn)的Mask R-CNN實例分割方法。該方法首先提出在Mask分支上使用卷積化條件隨機(jī)場(ConvCRF)來優(yōu)化Mask分支對于候選區(qū)域進(jìn)一步分割,并使用FCN-ConvCRF分支來代替原有分支;之后提出新錨點大小和IOU標(biāo)準(zhǔn),使得RPN候選框能夠涵蓋所有實例區(qū)域;最后使用一種添加部分經(jīng)過轉(zhuǎn)換網(wǎng)絡(luò)轉(zhuǎn)換的數(shù)據(jù)進(jìn)行訓(xùn)練的方法??偟膍AP值與原算法相比提升了3%,并且分割邊界精確度和魯棒性都有一定提高。
  • 圖  1  RPN層運(yùn)行當(dāng)中兩個可視化候選框

    圖  2  改進(jìn)后Mask R-CNN流程圖

    圖  3  圖像轉(zhuǎn)換前后對比

    圖  4  改進(jìn)的Mask分支和原分支輸出圖像對比

    圖  5  RPN層可視化結(jié)果

    表  1  原Mask分支與兩種改進(jìn)Mask分支的IOU時間(ms)對比

    Mask R-CNNFullCRFConvCRF
    時間12010
    平均IOU0.88310.8871
    下載: 導(dǎo)出CSV

    表  2  mAP值對比

    mAP值(IOU=50)mAP值(IOU=75)
    原Mask R-CNN0.600.39
    改進(jìn)的Mask R-CNN0.600.40
    下載: 導(dǎo)出CSV

    表  3  總mAP值對比

    mAP值(IOU=50)mAP值(IOU=75)mAP值(模糊數(shù)據(jù))
    原Mask R-CNN0.600.390.49
    復(fù)現(xiàn)的Mask R-CNN(coco)0.590.370.48
    復(fù)現(xiàn)的Mask R-CNN(模糊數(shù)據(jù))0.580.370.50
    改進(jìn)的Mask R-CNN(模糊數(shù)據(jù))0.660.430.51
    改進(jìn)的Mask R-CNN(coco)0.650.440.49
    Mnc0.440.24
    Fcis0.49
    Masklab0.570.37
    Masklab+0.600.40
    PANet0.650.43
    下載: 導(dǎo)出CSV
  • SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. The Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
    REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. The Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517–6525. doi: 10.1109/CVPR.2017.690.
    DAI Jifeng, HE Kaiming, and SUN Jian. Instance-aware semantic segmentation via multi-task network cascades[C]. The Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 3150–3158. doi: 10.1109/CVPR.2016.343.
    DAI Jifeng, HE Kaiming, LI Yi, et al. Instance-sensitive fully convolutional networks[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 534–549.
    LI Yi, QI Haozhi, DAI Jifeng, et al. Fully convolutional instance-aware semantic segmentation[C]. The Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4438–4446. doi: 10.1109/CVPR.2017.472.
    BAI Min and URTASUN R. Deep watershed transform for instance segmentation[C]. The Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2858–2866. doi: 10.1109/CVPR.2017.305.
    LIU Shu, JIA Jiaya, FIDLER S, et al. SGN: Sequential grouping networks for instance segmentation[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 3516–3524. doi: 10.1109/ICCV.2017.378.
    HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988.
    PINHEIRO P O, COLLOBERT R, and DOLLáR P. Learning to segment object candidates[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 1990–1998.
    PINHEIRO P O, LIN T Y, COLLOBERT R, et al. Learning to refine object segments[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 75–91. doi: 10.1007/978-3-319-46448-0_5.
    ZAGORUYKO S, LERER A, LIN T Y, et al. A multipath network for object detection[C]. The British Machine Vision Conference, Edinburgh, England, 2016. doi: 10.5244/C.30.15.
    羅會蘭, 盧飛, 孔繁勝. 基于區(qū)域與深度殘差網(wǎng)絡(luò)的圖像語義分割[J]. 電子與信息學(xué)報, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056

    LUO Huilan, LU Fei, and KONG Fansheng. Image semantic segmentation based on region and deep residual network[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184
    ZHENG Shuai, JAYASUMANA S, ROMERA-PAREDES B, et al. Conditional random fields as recurrent neural networks[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1529–1537.
    韓錚, 肖志濤. 基于紋元森林和顯著性先驗的弱監(jiān)督圖像語義分割方法[J]. 電子與信息學(xué)報, 2018, 40(3): 610–617. doi: 10.11999/JEIT170472

    HAN Zheng and XIAO Zhitao. Weakly supervised semantic segmentation based on semantic texton forest and saliency prior[J]. Journal of Electronics &Information Technology, 2018, 40(3): 610–617. doi: 10.11999/JEIT170472
    KR?HENBüHL P and KOLTUN V. Efficient inference in fully connected CRFs with Gaussian edge potentials[C]. The 24th International Conference on Neural Information Processing Systems, Granada, Spain, 2011: 109–117.
    TEICHMANN M T T and CIPOLLA R. Convolutional CRFs for semantic segmentation[EB/OL]. https://arxiv.org/abs/1805.04777, 2018.
    LAFFERTY J, MCCALLUM A, and PEREIRA F C N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]. The 18th International Conference on Machine Learning, San Francisco, CA, USA, 2001: 282–289.
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. http://arxiv.org/abs/1409.1556v6, 2014.
    GATYS L A, ECKER A S, and BETHGE M. Image style transfer using convolutional neural networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2414–2423. doi: 10.1109/CVPR.2016.265.
    CHEN L C, HERMANS A, PAPANDREOU G, et al. MaskLab: Instance segmentation by refining object detection with semantic and direction features[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4013–4022.
    LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8759–8768. doi: 10.1109/CVPR.2018.00913.
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數(shù):  1693
  • HTML全文瀏覽量:  949
  • PDF下載量:  185
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-08-08
  • 修回日期:  2020-08-26
  • 網(wǎng)絡(luò)出版日期:  2020-09-03
  • 刊出日期:  2020-11-16

目錄

    /

    返回文章
    返回