基于正則圖上量子游走的仲裁量子簽名方案
doi: 10.11999/JEIT190597 cstr: 32379.14.JEIT190597
-
中南大學計算機學院 長沙 410083
Arbitrated Quantum Signature Scheme with Quantum Walks on Regular Graphs
-
School of Computer Science and Engineering, Central South University, Changsha 410083, China
-
摘要:
量子游走已經被提出可以用于瞬時地傳輸量子比特或多維量子態(tài)。根據(jù)量子游走的隱形傳輸模型,該文提出一種無需提前準備糾纏源的基于正則圖上量子游走的仲裁量子簽名算法。在初始化階段,密鑰是由量子密鑰分發(fā)系統(tǒng)制備;在簽名階段,基于正則圖上的量子游走隱形傳輸模型被用于轉移信息副本密文從發(fā)送者到接收者。具體地,發(fā)送者編碼要簽名信息的密文在硬幣態(tài)上,通過兩步正則圖上的量子游走,可以自動地產生用于量子隱形傳輸必須的糾纏態(tài)。發(fā)送者和接收者對制備的糾纏態(tài)的測量為簽名生成和簽名驗證的憑據(jù)。在驗證階段,在仲裁的輔助下,驗證者依照發(fā)送者的經典結果核實簽名的有效性。此外,隨機數(shù)和認證的公共板被引進阻止接收方在接收真正信息序列之前的存在性偽造攻擊和否認攻擊。安全性分析表明設計的算法滿足簽名者和接收者的不可抵賴以及任何人的不可偽造。討論表明方案不能抗擊發(fā)送者的抵賴攻擊,相應的建議被給出。由于實驗上已經證明量子游走可以在多個不同的物理系統(tǒng)上實現(xiàn),因此該簽名方案未來是可實現(xiàn)的。
Abstract:Quantum walks are raised for teleporting qubit or qudit. Based on quantum walk teleportation, an arbitrated quantum signature scheme with quantum walks on regular graphs is suggested, in which the entanglement source does not need preparing ahead. In the initial phase, the secret keys are generated via quantum key distribution system. In the signing phase, the signature for the transmitted message is created by the signer. Teleportation of quantum walks on regular graphs is applied to teleporting encrypted message copy from the signer to the verifier. Concretely, the sender encodes the ciphertext of message copy on coin state. Then two-step quantum walks are performed on the initial system state engendering the necessary entangled state for quantum teleportation, which can be the basis of signature generation and verification. In the verifying phase, the verifier verifies the validity of the completed signature under the aid of an arbitrator. Additionally, the applications of random number and public board deter the verifier’s existential forgery and repudiation attacks before the verifier accepts the true message. Analyses show that the suggested arbitrated quantum signature algorithm satisfies the general two requirements, i.e., impossibility of disavowal from the signer and the verifier and impossibility of forgery from anyone. The discussions demonstrate that the scheme may not prevent disavowal attack from the signer and that the corresponding improvements are presented. The scheme may be realizable because quantum walks have experimentally proven to be implementable in different physical systems.
-
NIELSEN M A and CHUANG I. Quantum computation and quantum information[J]. American Journal of Physics, 2002, 70(5): 558–559. doi: 10.1119/1.1463744 SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Review, 1999, 41(2): 303–332. doi: 10.1137/S0036144598347011 GROVER L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Physical Review Letters, 1997, 79(2): 325–328. doi: 10.1103/PhysRevLett.79.325 GUO Ying, LIAO Qin, WANG Yijun, et al. Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction[J]. Physical Review A, 2017, 95(3): 032304. doi: 10.1103/PhysRevA.95.032304 ZHANG Zhaoyuan, SHI Ronghua, ZENG Guihua, et al. Coherent attacking continuous-variable quantum key distribution with entanglement in the middle[J]. Quantum Information Processing, 2018, 17(6): 1–18. doi: 10.1007/s11128-018-1903-0 MEIJER H and AKL S. Digital signature schemes for computer communication networks[J]. ACM SIGCOMM Computer Communication Review, 1981, 11(4): 37–41. doi: 10.1145/1013879.802657 ZENG Guihua and KEITEL C H. Arbitrated quantum-signature scheme[J]. Physical Review A, 2002, 65(4): 042312. doi: 10.1103/PhysRevA.65.042312 BARNUM H, CRéPEAU C, GOTTESMAN D, et al. Authentication of quantum messages[C]. The 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, Canada, 2002: 449–458. doi: 10.1109/SFCS.2002.1181969. LI Qin, CHAN W H, and LONG Dongyang. Arbitrated quantum signature scheme using Bell states[J]. Physical Review A, 2009, 79(5): 054307. doi: 10.1103/PhysRevA.79.054307 ZOU Xiangfu and QIU Daowen. Security analysis and improvements of arbitrated quantum signature schemes[J]. Physical Review A, 2010, 82(4): 042325. doi: 10.1103/PhysRevA.82.042325 GAO Fei, QIN Sujuan, GUO Fenzhuo, et al. Cryptanalysis of the arbitrated quantum signature protocols[J]. Physical Review A, 2011, 84(2): 022344. doi: 10.1103/PhysRevA.84.022344 CHOI J W, CHANG K Y, and HONG D. Security problem on arbitrated quantum signature schemes[J]. Physical Review A, 2011, 84(6): 062330. doi: 10.1103/PhysRevA.84.062330 張駿, 吳吉義. 可證明安全高效的仲裁量子簽名方案[J]. 北京郵電大學學報, 2013, 36(2): 113–116.ZHANG Jun and WU Jiyi. Provable secure efficient arbitrated quantum signature scheme[J]. Journal of Beijing University of Posts and Telecommunications, 2013, 36(2): 113–116. LI Fengguang and SHI Jianhong. An arbitrated quantum signature protocol based on the chained CNOT operations encryption[J]. Quantum Information Processing, 2015, 14(6): 2171–2181. doi: 10.1007/s1112 YANG Yuguang, LEI He, LIU Zhichao, et al. Arbitrated quantum signature scheme based on cluster states[J]. Quantum Information Processing, 2016, 15(6): 2487–2497. doi: 10.1007/s11128-016-1293-0 ZHANG Long, SUN Hongwei, ZHANG Kejia, et al. An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption[J]. Quantum Information Processing, 2017, 16(3): 1–15. doi: 10.1007/s11128-017-1531-0 ZHANG Yingying and ZENG Jiwen. An improved arbitrated quantum scheme with Bell states[J]. International Journal of Theoretical Physics, 2018, 57(4): 994–1003. doi: 10.1007/s10773-017-3632-z GUO Ying, FENG Yanyan, HUANG Dazu, et al. Arbitrated quantum signature scheme with continuous-variable coherent states[J]. International Journal of Theoretical Physics, 2016, 55(4): 2290–2302. doi: 10.1007/s10773-015-2867-9 FENG Yanyan, SHI Ronghua, and GUO Ying. Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states[J]. Chinese Physics B, 2018, 27(2): 020302. doi: 10.1088/1674-1056/27/2/020302 LOU Xiaoping, LONG Hu, TANG Wensheng, et al. Continuous-variable arbitrated quantum signature based on dense coding and teleportation[J]. IEEE Access, 2019, 7: 85719–85726. doi: 10.1109/ACCESS.2019.2925635 BENNETT C H, BRASSARD G, CRéPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13): 1895–1899. doi: 10.1103/PhysRevLett.70.1895 REN Lijie, HE Guangqiang, and ZENG Guihua. Universal teleportation via continuous-variable graph states[J]. Physical Review A, 2008, 78(4): 042302. doi: 10.1103/PhysRevA.78.042302 AHARONOV Y, DAVIDOVICH L, and ZAGURY N. Quantum random walks[J]. Physical Review A, 1993, 48(2): 1687–1690. doi: 10.1103/PhysRevA.48.1687 MEYER D A. From quantum cellular automata to quantum lattice gases[J]. Journal of Statistical Physics, 1996, 85(5/6): 551–574. doi: 10.1007/BF02199356 FARHI E and GUTMANN S. Quantum computation and decision trees[J]. Physical Review A, 1998, 58(2): 915–928. doi: 10.1103/PhysRevA.58.915 CHILDS A M and Goldstone J. Spatial search by quantum walk[J]. Physical Review A, 2004, 70(2): 022314. doi: 10.1103/PhysRevA.70.022314 AARONSON S and SHI Yaoyun. Quantum lower bounds for the collision and the element distinctness problems[J]. Journal of the ACM, 2004, 51(4): 595–605. doi: 10.1145/1008731.1008735 DOUGLAS B L and WANG J B. A classical approach to the graph isomorphism problem using quantum walks[J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41(7): 075303. doi: 10.1088/1751-8113/41/7/075303 DU Jiangfeng, LI Hui, XU Xiaodong, et al. Experimental implementation of the quantum random-walk algorithm[J]. Physical Review A, 2003, 67(4): 042316. doi: 10.1103/PhysRevA.67.042316 SCHMITZ H, MATJESCHK R, SCHNEIDER C, et al. Quantum walk of a trapped ion in phase space[J]. Physical Review Letter, 2009, 103(9): 090504. doi: 10.1103/PhysRevLett.103.090504 PERUZZO A, LOBINO M, MATTHEWS J C F, et al. Quantum walks of correlated photons[J]. Science, 2010, 329(5998): 1500–1503. doi: 10.1126/science.1193515 WANG Yu, SHANG Yun, and XUE Peng. Generalized teleportation by quantum walks[J]. Quantum Information Processing, 2017, 16(9): 1–13. doi: 10.1007/s11128-017-1675-y SHANG Yun, WANG Yu, LI Meng, et al. Quantum communication protocols by quantum walks with two coins[J]. EPL (Europhysics Letters) , 2019, 124(6): 60009. doi: 10.1209/0295-5075/124/60009 AHARONOV D, AMBAINIS A, KEMPE J, et al. Quantum walks on graphs[C]. The 33rd Annual ACM Symposium on Theory of Computing, Hersonissos, Greece, 2001: 50–59. doi: 10.1145/380752.380758. BRUN T A, CARTERET H A, and AMBAINIS A. Quantum walks driven by many coins[J]. Physical Review A, 2003, 67(5): 052317. doi: 10.1103/PhysRevA.67.052317 BUHRMAN H, CLEVE R, WATROUS J, et al. Quantum fingerprinting[J]. Physical Review Letters, 2001, 87(16): 167902. doi: 10.1103/PhysRevLett.87.167902 PéREZ E, CURTY M, SANTOS D J, et al. Quantum authentication with unitary coding sets[J]. Journal of Modern Optics, 2003, 50(6/7): 1035–1047. doi: 10.1080/09500340308234550 -