一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于正則圖上量子游走的仲裁量子簽名方案

施榮華 馮艷艷 石金晶

施榮華, 馮艷艷, 石金晶. 基于正則圖上量子游走的仲裁量子簽名方案[J]. 電子與信息學報, 2020, 42(1): 89-97. doi: 10.11999/JEIT190597
引用本文: 施榮華, 馮艷艷, 石金晶. 基于正則圖上量子游走的仲裁量子簽名方案[J]. 電子與信息學報, 2020, 42(1): 89-97. doi: 10.11999/JEIT190597
Ronghua SHI, Yanyan FENG, Jinjing SHI. Arbitrated Quantum Signature Scheme with Quantum Walks on Regular Graphs[J]. Journal of Electronics & Information Technology, 2020, 42(1): 89-97. doi: 10.11999/JEIT190597
Citation: Ronghua SHI, Yanyan FENG, Jinjing SHI. Arbitrated Quantum Signature Scheme with Quantum Walks on Regular Graphs[J]. Journal of Electronics & Information Technology, 2020, 42(1): 89-97. doi: 10.11999/JEIT190597

基于正則圖上量子游走的仲裁量子簽名方案

doi: 10.11999/JEIT190597 cstr: 32379.14.JEIT190597
基金項目: 國家自然科學基金(61871407, 61872390, 61972418),中南大學中央高?;究蒲袠I(yè)務費專項基金(2018zzts179)
詳細信息
    作者簡介:

    施榮華:男,1963年生,教授,研究方向為量子密碼協(xié)議、信息和網絡安全

    馮艷艷:女,1991年生,博士生,研究方向為量子密碼協(xié)議、量子游走及其應用

    石金晶:女,1986年生,副教授,研究方向為量子密碼協(xié)議、量子神經網絡及其應用

    通訊作者:

    馮艷艷 fengyanyanhenu@163.com

  • 中圖分類號: TN918.2

Arbitrated Quantum Signature Scheme with Quantum Walks on Regular Graphs

Funds: The National Natural Science Foundation of China (61871407, 61872390, 61972418), The Fundamental Research Funds for the Central Universities of Central South University (2018zzts179)
  • 摘要:

    量子游走已經被提出可以用于瞬時地傳輸量子比特或多維量子態(tài)。根據(jù)量子游走的隱形傳輸模型,該文提出一種無需提前準備糾纏源的基于正則圖上量子游走的仲裁量子簽名算法。在初始化階段,密鑰是由量子密鑰分發(fā)系統(tǒng)制備;在簽名階段,基于正則圖上的量子游走隱形傳輸模型被用于轉移信息副本密文從發(fā)送者到接收者。具體地,發(fā)送者編碼要簽名信息的密文在硬幣態(tài)上,通過兩步正則圖上的量子游走,可以自動地產生用于量子隱形傳輸必須的糾纏態(tài)。發(fā)送者和接收者對制備的糾纏態(tài)的測量為簽名生成和簽名驗證的憑據(jù)。在驗證階段,在仲裁的輔助下,驗證者依照發(fā)送者的經典結果核實簽名的有效性。此外,隨機數(shù)和認證的公共板被引進阻止接收方在接收真正信息序列之前的存在性偽造攻擊和否認攻擊。安全性分析表明設計的算法滿足簽名者和接收者的不可抵賴以及任何人的不可偽造。討論表明方案不能抗擊發(fā)送者的抵賴攻擊,相應的建議被給出。由于實驗上已經證明量子游走可以在多個不同的物理系統(tǒng)上實現(xiàn),因此該簽名方案未來是可實現(xiàn)的。

  • 圖  1  基于多個硬幣的量子游走線路原理圖

    圖  2  基于兩個硬幣量子游走的隱形傳輸線路原理圖

    圖  3  比較兩個未知量子態(tài)的線路原理圖

    圖  4  基于$d$正則圖量子游走的AQS算法的原理圖

    圖  5  n分別取50, 100, 150 3種情況下Alice成功抵賴簽名的概率${\rm{P}}{{\rm{r}}_{{\rm{dis}}}}$

  • NIELSEN M A and CHUANG I. Quantum computation and quantum information[J]. American Journal of Physics, 2002, 70(5): 558–559. doi: 10.1119/1.1463744
    SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Review, 1999, 41(2): 303–332. doi: 10.1137/S0036144598347011
    GROVER L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Physical Review Letters, 1997, 79(2): 325–328. doi: 10.1103/PhysRevLett.79.325
    GUO Ying, LIAO Qin, WANG Yijun, et al. Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction[J]. Physical Review A, 2017, 95(3): 032304. doi: 10.1103/PhysRevA.95.032304
    ZHANG Zhaoyuan, SHI Ronghua, ZENG Guihua, et al. Coherent attacking continuous-variable quantum key distribution with entanglement in the middle[J]. Quantum Information Processing, 2018, 17(6): 1–18. doi: 10.1007/s11128-018-1903-0
    MEIJER H and AKL S. Digital signature schemes for computer communication networks[J]. ACM SIGCOMM Computer Communication Review, 1981, 11(4): 37–41. doi: 10.1145/1013879.802657
    ZENG Guihua and KEITEL C H. Arbitrated quantum-signature scheme[J]. Physical Review A, 2002, 65(4): 042312. doi: 10.1103/PhysRevA.65.042312
    BARNUM H, CRéPEAU C, GOTTESMAN D, et al. Authentication of quantum messages[C]. The 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, Canada, 2002: 449–458. doi: 10.1109/SFCS.2002.1181969.
    LI Qin, CHAN W H, and LONG Dongyang. Arbitrated quantum signature scheme using Bell states[J]. Physical Review A, 2009, 79(5): 054307. doi: 10.1103/PhysRevA.79.054307
    ZOU Xiangfu and QIU Daowen. Security analysis and improvements of arbitrated quantum signature schemes[J]. Physical Review A, 2010, 82(4): 042325. doi: 10.1103/PhysRevA.82.042325
    GAO Fei, QIN Sujuan, GUO Fenzhuo, et al. Cryptanalysis of the arbitrated quantum signature protocols[J]. Physical Review A, 2011, 84(2): 022344. doi: 10.1103/PhysRevA.84.022344
    CHOI J W, CHANG K Y, and HONG D. Security problem on arbitrated quantum signature schemes[J]. Physical Review A, 2011, 84(6): 062330. doi: 10.1103/PhysRevA.84.062330
    張駿, 吳吉義. 可證明安全高效的仲裁量子簽名方案[J]. 北京郵電大學學報, 2013, 36(2): 113–116.

    ZHANG Jun and WU Jiyi. Provable secure efficient arbitrated quantum signature scheme[J]. Journal of Beijing University of Posts and Telecommunications, 2013, 36(2): 113–116.
    LI Fengguang and SHI Jianhong. An arbitrated quantum signature protocol based on the chained CNOT operations encryption[J]. Quantum Information Processing, 2015, 14(6): 2171–2181. doi: 10.1007/s1112
    YANG Yuguang, LEI He, LIU Zhichao, et al. Arbitrated quantum signature scheme based on cluster states[J]. Quantum Information Processing, 2016, 15(6): 2487–2497. doi: 10.1007/s11128-016-1293-0
    ZHANG Long, SUN Hongwei, ZHANG Kejia, et al. An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption[J]. Quantum Information Processing, 2017, 16(3): 1–15. doi: 10.1007/s11128-017-1531-0
    ZHANG Yingying and ZENG Jiwen. An improved arbitrated quantum scheme with Bell states[J]. International Journal of Theoretical Physics, 2018, 57(4): 994–1003. doi: 10.1007/s10773-017-3632-z
    GUO Ying, FENG Yanyan, HUANG Dazu, et al. Arbitrated quantum signature scheme with continuous-variable coherent states[J]. International Journal of Theoretical Physics, 2016, 55(4): 2290–2302. doi: 10.1007/s10773-015-2867-9
    FENG Yanyan, SHI Ronghua, and GUO Ying. Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states[J]. Chinese Physics B, 2018, 27(2): 020302. doi: 10.1088/1674-1056/27/2/020302
    LOU Xiaoping, LONG Hu, TANG Wensheng, et al. Continuous-variable arbitrated quantum signature based on dense coding and teleportation[J]. IEEE Access, 2019, 7: 85719–85726. doi: 10.1109/ACCESS.2019.2925635
    BENNETT C H, BRASSARD G, CRéPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13): 1895–1899. doi: 10.1103/PhysRevLett.70.1895
    REN Lijie, HE Guangqiang, and ZENG Guihua. Universal teleportation via continuous-variable graph states[J]. Physical Review A, 2008, 78(4): 042302. doi: 10.1103/PhysRevA.78.042302
    AHARONOV Y, DAVIDOVICH L, and ZAGURY N. Quantum random walks[J]. Physical Review A, 1993, 48(2): 1687–1690. doi: 10.1103/PhysRevA.48.1687
    MEYER D A. From quantum cellular automata to quantum lattice gases[J]. Journal of Statistical Physics, 1996, 85(5/6): 551–574. doi: 10.1007/BF02199356
    FARHI E and GUTMANN S. Quantum computation and decision trees[J]. Physical Review A, 1998, 58(2): 915–928. doi: 10.1103/PhysRevA.58.915
    CHILDS A M and Goldstone J. Spatial search by quantum walk[J]. Physical Review A, 2004, 70(2): 022314. doi: 10.1103/PhysRevA.70.022314
    AARONSON S and SHI Yaoyun. Quantum lower bounds for the collision and the element distinctness problems[J]. Journal of the ACM, 2004, 51(4): 595–605. doi: 10.1145/1008731.1008735
    DOUGLAS B L and WANG J B. A classical approach to the graph isomorphism problem using quantum walks[J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41(7): 075303. doi: 10.1088/1751-8113/41/7/075303
    DU Jiangfeng, LI Hui, XU Xiaodong, et al. Experimental implementation of the quantum random-walk algorithm[J]. Physical Review A, 2003, 67(4): 042316. doi: 10.1103/PhysRevA.67.042316
    SCHMITZ H, MATJESCHK R, SCHNEIDER C, et al. Quantum walk of a trapped ion in phase space[J]. Physical Review Letter, 2009, 103(9): 090504. doi: 10.1103/PhysRevLett.103.090504
    PERUZZO A, LOBINO M, MATTHEWS J C F, et al. Quantum walks of correlated photons[J]. Science, 2010, 329(5998): 1500–1503. doi: 10.1126/science.1193515
    WANG Yu, SHANG Yun, and XUE Peng. Generalized teleportation by quantum walks[J]. Quantum Information Processing, 2017, 16(9): 1–13. doi: 10.1007/s11128-017-1675-y
    SHANG Yun, WANG Yu, LI Meng, et al. Quantum communication protocols by quantum walks with two coins[J]. EPL (Europhysics Letters) , 2019, 124(6): 60009. doi: 10.1209/0295-5075/124/60009
    AHARONOV D, AMBAINIS A, KEMPE J, et al. Quantum walks on graphs[C]. The 33rd Annual ACM Symposium on Theory of Computing, Hersonissos, Greece, 2001: 50–59. doi: 10.1145/380752.380758.
    BRUN T A, CARTERET H A, and AMBAINIS A. Quantum walks driven by many coins[J]. Physical Review A, 2003, 67(5): 052317. doi: 10.1103/PhysRevA.67.052317
    BUHRMAN H, CLEVE R, WATROUS J, et al. Quantum fingerprinting[J]. Physical Review Letters, 2001, 87(16): 167902. doi: 10.1103/PhysRevLett.87.167902
    PéREZ E, CURTY M, SANTOS D J, et al. Quantum authentication with unitary coding sets[J]. Journal of Modern Optics, 2003, 50(6/7): 1035–1047. doi: 10.1080/09500340308234550
  • 加載中
圖(5)
計量
  • 文章訪問數(shù):  1957
  • HTML全文瀏覽量:  853
  • PDF下載量:  71
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-08-07
  • 修回日期:  2019-10-29
  • 網絡出版日期:  2019-11-13
  • 刊出日期:  2020-01-21

目錄

    /

    返回文章
    返回