基于空時導向約束的天基雷達離散旁瓣雜波判別方法
doi: 10.11999/JEIT190562 cstr: 32379.14.JEIT190562
-
西安空間無線電技術研究所 西安 710100
基金項目: 國家自然科學基金(61701395, 61871138, 41806211)
A Discrete Side-lobe Clutter Recognition Method Using Space-time Steering Vectors for Space Based Radar System
-
Xi’an Institute of Space Radio Technology, Xi’an 710100, China
Funds: The National Natural Science Foundation of China (61701395, 61871138, 41806211)
-
摘要: 由于天基雷達覆蓋范圍廣,大量強離散雜波(小型島礁、陸地鐵塔等)會從天線旁瓣進入雷達系統(tǒng),其多普勒特征與目標相同,極易造成虛警。針對以上問題,該文提出基于空時導向約束的天基雷達離散旁瓣雜波判別方法,該方法首先選取空時自適應處理(STAP)雜波抑制后檢測到的潛在“目標”(包含真實目標與離散旁瓣雜波)距離多普勒單元及其附近單元;然后根據雜波多普勒頻率與空間角度的耦合關系獲得各雜波單元對應的空時導向矢量;最后利用獲得新的導向矢量構成的濾波器再次對“目標”距離多普勒單元及其附近單元進行濾波處理,此時真實目標信雜噪比會大幅度降低,而離散旁瓣雜波信雜噪比變化不大,從而實現離散旁瓣雜波的判別。理論分析及機載實測數據處理證明該方法具有良好的穩(wěn)健性和可靠性。Abstract: On account of the large coverage of space based radar, a lot of discrete strong side-lobe clutter, which shares familiar Doppler feature with the real moving targets, can be received by the radar system and hence results in false alarms. For this problem, a discrete side-lobe clutter recognition method using space-time steering vectors for space based radar system is proposed. In this method, the “Suspected targets”, including both the real moving targets and discrete side-lobe clutter, are detected after suppressing clutter by employing the Space-Time Adaptive Processing (STAP). The range-Doppler cells where “suspected targets” located in or around are selected. Afterwards, the space time steering vectors of them are obtained based on the coupling relationship between Doppler frequencies and space angles of clutter. Lastly, the above range-Doppler cells are processed again by the adaptive processing filters which are derived from the new space-time steering vectors. Obviously, the signal-clutter-noise ratio of real moving target will be reduced significantly, while it will not change much for the discrete side-lobe clutter. Therefore, the discrete side-lobe clutter can be identified by using the proposed method. Theoretical analyses and multi-channel airborne radar experiments demonstrate the effectiveness and stability of this method.
-
表 1 機載雷達系統(tǒng)參數
主要系統(tǒng)參數 參數值 波段 L 信號帶寬(MHz) 10 脈沖重復頻率 (Hz) 2500 雷達平臺高度(m) 3300 目標靶機高度(m) 300 接收通道數目 8 下載: 導出CSV
-
楊曉超, 王偉偉, 張欣, 等. 一種天基雷達等距離環(huán)雜波仿真方法[J]. 現代雷達, 2018, 40(4): 13–17, 49. doi: 10.16592/j.cnki.1004-7859.2018.04.003YANG Xiaochao, WANG Weiwei, ZHANG Xin, et al. A simulation method of space-based radar iso-range ring clutter[J]. Modern Radar, 2018, 40(4): 13–17, 49. doi: 10.16592/j.cnki.1004-7859.2018.04.003 SKOLNIK M I, 南京電子技術研究所譯. 雷達手冊[M]. 3版. 北京: 電子工業(yè)出版社, 2010: 148–152.SKOLNIK M I, Nanjing Institute of Electronic Technology. Radar Handbook[M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2010: 148–152. LI Huiyong, BAO Weiwei, HU Jinfeng, et al. A training samples selection method based on system identification for STAP[J]. Signal Processing, 2018, 142: 119–124. doi: 10.1016/j.sigpro.2017.07.008 WU Yifeng, WANG Tong, WU Jianxin, et al. Robust training samples selection algorithm based on spectral similarity for space-time adaptive processing in heterogeneous interference environments[J]. IET Radar, Sonar & Navigation, 2015, 9(7): 778–782. doi: 10.1049/iet-rsn.2014.0285 SUN Guohao, HE Zishu, TONG Jun, et al. Knowledge-aided covariance matrix estimation via Kronecker product expansions for airborne STAP[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 527–531. doi: 10.1109/LGRS.2018.2799329 李永偉, 謝文沖. 基于空時內插的端射陣機載雷達雜波補償新方法[J]. 電子與信息學報, 2019, 41(9): 2115–2122. doi: 10.11999/JEIT181131LI Yongwei and XIE Wenchong. A novel clutter spectrum compensation method for end-fire array airborne radar based on space-time interpolation[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2115–2122. doi: 10.11999/JEIT181131 WEN Cai, PENG Jinye, ZHOU Yan, et al. Enhanced three-dimensional joint domain localized STAP for airborne FDA-MIMO radar under dense false-target jamming scenario[J]. IEEE Sensors Journal, 2018, 18(10): 4154–4166. doi: 10.1109/jsen.2018.2820905 劉斌, 何廣軍, 馮有前, 等. 靜態(tài)和差波束匹配的空時自適應處理方法[J]. 西安電子科技大學學報: 自然科學版, 2017, 44(3): 138–143, 169. doi: 10.3969/j.issn.1001-2400.2017.03.024LIU Bin, HE Guangjun, FENG Youqian, et al. Static sum-and-difference beam matched STAP method[J]. Journal of Xidian University, 2017, 44(3): 138–143, 169. doi: 10.3969/j.issn.1001-2400.2017.03.024 XU Huajian, YANG Zhiwei, HE Shun, et al. A generalized sample weighting method in heterogeneous environment for space-time adaptive processing[J]. Digital Signal Processing, 2018, 72: 147–159. doi: 10.1016/j.dsp.2018.10.005 侯靜, 胡孟凱, 王子微. 一種改進的知識輔助MIMO雷達空時自適應處理方法[J]. 電子與信息學報, 2019, 41(4): 795–800. doi: 10.11999/JEIT180557HOU Jing, HU Mengkai, and WANG Ziwei. An improved knowledge-aided space-time adaptive signal processing algorithm for MIMO radar[J]. Journal of Electronics &Information Technology, 2019, 41(4): 795–800. doi: 10.11999/JEIT180557 SHNIDMAN D A and TOUMODGE S S. Sidelobe blanking with integration and target fluctuation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3): 1023–1037. doi: 10.1109/TAES.2002.1039418 NARASIMHAN R S, VENGADARAJAN A, and RAMAKRISHNAN K R. Mitigation of sidelobe clutter discrete using sidelobe blanking technique in airborne radars[C]. 2018 IEEE Aerospace Conference, Big Sky, USA, 2018: 1–10. BAO Zheng, WU Shunjun, LIAO Guisheng, et al. Review of reduced rank space-time adaptive processing for airborne radar[C]. International Radar Conference, Beijing, China, 1996: 766–769. 何友, 關鍵, 孟祥偉, 等. 雷達目標檢測與恒虛警處理[M]. 2版. 北京: 清華大學出版社, 2011: 40–50.HE You, GUAN Jian, MENG Xiangwei, et al. Radar Target Detection and CFAR Processing[M]. 2nd ed. Beijing: Tsinghua University Press, 2011: 40–50. YANG Xiaopeng, LIU Yongxu, HU Xiaona, et al. Robust generalized inner products algorithm using prolate spheroidal wave functions[C]. 2012 IEEE Radar Conference, Atlanta, USA, 2012: 581–584. -