一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于遷移演員-評(píng)論家學(xué)習(xí)的服務(wù)功能鏈部署算法

唐倫 賀小雨 王曉 陳前斌

唐倫, 賀小雨, 王曉, 陳前斌. 基于遷移演員-評(píng)論家學(xué)習(xí)的服務(wù)功能鏈部署算法[J]. 電子與信息學(xué)報(bào), 2020, 42(11): 2671-2679. doi: 10.11999/JEIT190542
引用本文: 唐倫, 賀小雨, 王曉, 陳前斌. 基于遷移演員-評(píng)論家學(xué)習(xí)的服務(wù)功能鏈部署算法[J]. 電子與信息學(xué)報(bào), 2020, 42(11): 2671-2679. doi: 10.11999/JEIT190542
Lun TANG, Xiaoyu HE, Xiao WANG, Qianbin CHEN. Deployment Algorithm of Service Function Chain Based on Transfer Actor-Critic Learning[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2671-2679. doi: 10.11999/JEIT190542
Citation: Lun TANG, Xiaoyu HE, Xiao WANG, Qianbin CHEN. Deployment Algorithm of Service Function Chain Based on Transfer Actor-Critic Learning[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2671-2679. doi: 10.11999/JEIT190542

基于遷移演員-評(píng)論家學(xué)習(xí)的服務(wù)功能鏈部署算法

doi: 10.11999/JEIT190542 cstr: 32379.14.JEIT190542
基金項(xiàng)目: 國家自然科學(xué)基金(61571073),重慶市教委科學(xué)技術(shù)研究項(xiàng)目(KJZD-M20180601)
詳細(xì)信息
    作者簡(jiǎn)介:

    唐倫:男,1973年生,教授,博士生導(dǎo)師,主要研究方向?yàn)樾乱淮鸁o線通信網(wǎng)絡(luò)、異構(gòu)蜂窩網(wǎng)絡(luò)等

    賀小雨:女,1995年生,碩士生,研究方向?yàn)榫W(wǎng)絡(luò)切片資源分配和強(qiáng)化學(xué)習(xí)

    王曉:男,1995年生,碩士生,研究方向?yàn)榫W(wǎng)絡(luò)切片資源優(yōu)化和機(jī)器學(xué)習(xí)

    陳前斌:男,1967年生,教授,博士生導(dǎo)師,主要研究方向?yàn)閭€(gè)人通信、多媒體信息處理與傳輸、下一代移動(dòng)通信網(wǎng)絡(luò)、異構(gòu)蜂窩網(wǎng)絡(luò)等

    通訊作者:

    賀小雨 Hexy1995@163.com

  • 中圖分類號(hào): TN915

Deployment Algorithm of Service Function Chain Based on Transfer Actor-Critic Learning

Funds: The National Natural Science Foundation of China (61571073), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M20180601)
  • 摘要: 針對(duì)5G網(wǎng)絡(luò)切片環(huán)境下由于業(yè)務(wù)請(qǐng)求的隨機(jī)性和未知性導(dǎo)致的資源分配不合理從而引起的系統(tǒng)高時(shí)延問題,該文提出了一種基于遷移演員-評(píng)論家(A-C)學(xué)習(xí)的服務(wù)功能鏈(SFC)部署算法(TACA)。首先,該算法建立基于虛擬網(wǎng)絡(luò)功能放置、計(jì)算資源、鏈路帶寬資源和前傳網(wǎng)絡(luò)資源聯(lián)合分配的端到端時(shí)延最小化模型,并將其轉(zhuǎn)化為離散時(shí)間馬爾可夫決策過程(MDP)。而后,在該MDP中采用A-C學(xué)習(xí)算法與環(huán)境進(jìn)行不斷交互動(dòng)態(tài)調(diào)整SFC部署策略,優(yōu)化端到端時(shí)延。進(jìn)一步,為了實(shí)現(xiàn)并加速該A-C算法在其他相似目標(biāo)任務(wù)中(如業(yè)務(wù)請(qǐng)求到達(dá)率普遍更高)的收斂過程,采用遷移A-C學(xué)習(xí)算法實(shí)現(xiàn)利用源任務(wù)學(xué)習(xí)的SFC部署知識(shí)快速尋找目標(biāo)任務(wù)中的部署策略。仿真結(jié)果表明,該文所提算法能夠減小且穩(wěn)定SFC業(yè)務(wù)數(shù)據(jù)包的隊(duì)列積壓,優(yōu)化系統(tǒng)端到端時(shí)延,并提高資源利用率。
  • 圖  1  系統(tǒng)架構(gòu)

    圖  2  A-C學(xué)習(xí)框架

    圖  3  不同演員學(xué)習(xí)率A-C算法的收斂性

    圖  4  不同評(píng)論家學(xué)習(xí)率A-C算法的收斂性

    圖  5  基于不同優(yōu)化器的A-C算法的收斂性

    圖  6  3種切片的數(shù)據(jù)包到達(dá)率與隊(duì)列積壓和變化對(duì)照?qǐng)D

    圖  7  3個(gè)切片的VNF放置方式選擇統(tǒng)計(jì)圖

    圖  8  不同算法的系統(tǒng)收斂時(shí)延

    圖  9  不同算法的資源利用率

    圖  10  不同遷移率因子的TACA算法收斂過程

    表  1  基于遷移A-C學(xué)習(xí)的SFC部署算法

     輸入:高斯策略${ {\pi} _\theta }(s,a)\sim N(\mu (s),{\sigma ^2})$,以及其梯度${{\text{?}} _\theta }\ln { {\pi} _\theta }(s,a)$,狀態(tài)分布${d^{\pi} }(s)$,學(xué)習(xí)率${\varepsilon _{a,t}}$和${\varepsilon _{c,t}}$,折扣因子$\beta $
     (1) for ${\rm{epsoide } }= 0,1,2, ··· ,E{p_{\max} }$ do
     (2) 初始化:策略參數(shù)向量${{{\theta }}_t}$,狀態(tài)-動(dòng)作值函數(shù)參數(shù)向量${\omega _t}$,狀態(tài)值函數(shù)參數(shù)向量${{{\upsilon}} _t}$,初始狀態(tài)${s_0}\sim{d_{\pi} }(s)$,本地部署策略${\pi} _\theta ^n(s,a)$,外
       來遷移部署策略${\pi} _\theta ^e(s,a)$
     (3) for 回合每一步$t = 0,1, ··· ,T$do
     (4) 由式(20)得到整體部署策略,遵循整體策略${ {\pi} _\theta }(s,a)$選擇動(dòng)作${a^{(t)}}$,進(jìn)行VNF放置和資源分配,而后更新環(huán)境狀態(tài)${s^{(t + 1)}}$,并得到立即
       獎(jiǎng)勵(lì)${R_t} = - \tau (t)$
     (5) end for
     (6) 評(píng)論家過程:
     (a) 計(jì)算相容特征:由式(10)得處于狀態(tài)$s$的基函數(shù)向量,結(jié)合式(14),式(15)得相容特征
     (b) 相容近似:由式(11)得狀態(tài)-動(dòng)作值函數(shù)近似,由式(16)得狀態(tài)值函數(shù)近似
     (c) TD誤差計(jì)算:由式(12),式(17)分別得狀態(tài)-動(dòng)作值函數(shù)、狀態(tài)值函數(shù)的TD誤差
     (d) 更新評(píng)論家參數(shù):由式(13)得狀態(tài)-動(dòng)作值函數(shù)參數(shù)向量更新,由式(18)得狀態(tài)值函數(shù)參數(shù)向量更新
     (7) 演員過程:
     (a) 計(jì)算優(yōu)勢(shì)函數(shù)
     (b) 重寫策略梯度:代入優(yōu)勢(shì)函數(shù)由式(19)得策略梯度
     (c) 更新演員參數(shù):由式(8)得策略參數(shù)向量更新
     (8) end for
    下載: 導(dǎo)出CSV
  • AGARWAL S, MALANDRINO F, CHIASSERINI C F, et al. VNF placement and resource allocation for the support of vertical services in 5G networks[J]. IEEE/ACM Transactions on Networking, 2019, 27(1): 433–446. doi: 10.1109/TNET.2018.2890631
    史久根, 張徑, 徐皓, 等. 一種面向運(yùn)營成本優(yōu)化的虛擬網(wǎng)絡(luò)功能部署和路由分配策略[J]. 電子與信息學(xué)報(bào), 2019, 41(4): 973–979. doi: 10.11999/JEIT180522

    SHI Jiugen, ZHANG Jing, XU Hao, et al. Joint optimization of virtualized network function placement and routing allocation for operational expenditure[J]. Journal of Electronics &Information Technology, 2019, 41(4): 973–979. doi: 10.11999/JEIT180522
    LI Defang, HONG Peilin, XUE Kaiping, et al. Virtual network function placement considering resource optimization and SFC requests in cloud datacenter[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 29(7): 1664–1677. doi: 10.1109/TPDS.2018.2802518
    PEI Jianing, HONG Peilin, and LI Defang. Virtual network function selection and chaining based on deep learning in SDN and NFV-Enabled networks[C]. 2018 IEEE International Conference on Communications Workshops, Kansas City, USA, 2018: 1–6. doi: 10.1109/ICCW.2018.8403657.
    CAI Yibin, WANG Ying, ZHONG Xuxia, et al. An approach to deploy service function chains in satellite networks[C]. NOMS 2018–2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, China, 2018: 1–7. doi: 10.1109/NOMS.2018.8406159.
    QU Long, ASSI C, and SHABAN K. Delay-aware scheduling and resource optimization with network function virtualization[J]. IEEE Transactions on Communications, 2016, 64(9): 3746–3758. doi: 10.1109/TCOMM.2016.2580150
    陳前斌, 楊友超, 周鈺, 等. 基于隨機(jī)學(xué)習(xí)的接入網(wǎng)服務(wù)功能鏈部署算法[J]. 電子與信息學(xué)報(bào), 2019, 41(2): 417–423. doi: 10.11999/JEIT180310

    CHEN Qianbin, YANG Youchao, ZHOU Yu, et al. Deployment algorithm of service function chain of access network based on stochastic learning[J]. Journal of Electronics &Information Technology, 2019, 41(2): 417–423. doi: 10.11999/JEIT180310
    PHAN T V, BAO N K, KIM Y, et al. Optimizing resource allocation for elastic security VNFs in the SDNFV-enabled cloud computing[C]. 2017 International Conference on Information Networking, Da Nang, Vietnam, 2017: 163–166. doi: 10.1109/ICOIN.2017.7899497.
    XIA Weiwei and SHEN Lianfeng. Joint resource allocation using evolutionary algorithms in heterogeneous mobile cloud computing networks[J]. China Communications, 2018, 15(8): 189–204. doi: 10.1109/CC.2018.8438283
    ZHU Zhengfa, PENG Jun, GU Xin, et al. Fair resource allocation for system throughput maximization in mobile edge computing[J]. IEEE Access, 2018, 6: 5332–5340. doi: 10.1109/ACCESS.2018.2790963
    MAO Yuyi, ZHANG Jun, and LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3590–3605. doi: 10.1109/JSAC.2016.2611964
    MEHRAGHDAM S, KELLER M, and KARL H. Specifying and placing chains of virtual network functions[C]. The 3rd IEEE International Conference on Cloud Networking, Luxembourg, Luxembourg, 2014: 7–13. doi: 10.1109/CloudNet.2014.6968961.
    HAGHIGHI A A, HEYDARI S S, and SHAHBAZPANAHI S. MDP modeling of resource provisioning in virtualized content-delivery networks[C]. The 25th IEEE International Conference on Network Protocols, Toronto, Canada, 2017: 1–6. doi: 10.1109/ICNP.2017.8117600.
    GRONDMAN I, BUSONIU L, LOPES G A D, et al. A survey of actor-critic reinforcement learning: Standard and natural policy gradients[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) , 2012, 42(6): 1291–1307. doi: 10.1109/TSMCC.2012.2218595
    LEE D H and LEE J J. Incremental receptive field weighted actor-critic[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1): 62–71. doi: 10.1109/TII.2012.2209660
    LI Rongpeng, ZHAO Zhifeng, CHEN Xianfu, et al. TACT: A transfer actor-critic learning framework for energy saving in cellular radio access networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(4): 2000–2011. doi: 10.1109/TWC.2014.022014.130840
    KOUSHI A M, HU Fei, and KUMAR S. Intelligent spectrum management based on transfer actor-critic learning for rateless transmissions in cognitive radio networks[J]. IEEE Transactions on Mobile Computing, 2018, 17(5): 1204–1215. doi: 10.1109/TMC.2017.2744620
  • 加載中
圖(10) / 表(1)
計(jì)量
  • 文章訪問數(shù):  2749
  • HTML全文瀏覽量:  1458
  • PDF下載量:  106
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-07-18
  • 修回日期:  2020-03-07
  • 網(wǎng)絡(luò)出版日期:  2020-04-08
  • 刊出日期:  2020-11-16

目錄

    /

    返回文章
    返回