一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

虛擬網(wǎng)絡(luò)切片中的在線異常檢測(cè)算法研究

王威麗 陳前斌 唐倫

王威麗, 陳前斌, 唐倫. 虛擬網(wǎng)絡(luò)切片中的在線異常檢測(cè)算法研究[J]. 電子與信息學(xué)報(bào), 2020, 42(6): 1460-1467. doi: 10.11999/JEIT190531
引用本文: 王威麗, 陳前斌, 唐倫. 虛擬網(wǎng)絡(luò)切片中的在線異常檢測(cè)算法研究[J]. 電子與信息學(xué)報(bào), 2020, 42(6): 1460-1467. doi: 10.11999/JEIT190531
Weili WANG, Qianbin CHEN, Lun TANG. Online Anomaly Detection for Virtualized Network Slicing[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1460-1467. doi: 10.11999/JEIT190531
Citation: Weili WANG, Qianbin CHEN, Lun TANG. Online Anomaly Detection for Virtualized Network Slicing[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1460-1467. doi: 10.11999/JEIT190531

虛擬網(wǎng)絡(luò)切片中的在線異常檢測(cè)算法研究

doi: 10.11999/JEIT190531 cstr: 32379.14.JEIT190531
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61571073),重慶市教委科學(xué)技術(shù)研究項(xiàng)目(KJZD-M201800601)
詳細(xì)信息
    作者簡(jiǎn)介:

    王威麗:女,1994年生,博士生,研究方向?yàn)樘摂M化網(wǎng)絡(luò)切片、人工智能算法等

    陳前斌:男,1967年生,教授,博士生導(dǎo)師,研究方向?yàn)閭€(gè)人通信、多媒體信息處理與傳輸、下一代移動(dòng)通信網(wǎng)絡(luò)

    唐倫:男,1973年生,教授,博士生導(dǎo)師,研究方向?yàn)樾乱淮鸁o(wú)線通信網(wǎng)絡(luò)、異構(gòu)蜂窩網(wǎng)絡(luò)

    通訊作者:

    陳前斌 cqb@cqupt.edu.cn

  • 中圖分類號(hào): TN929.5

Online Anomaly Detection for Virtualized Network Slicing

Funds: The National Natural Science Foundation of China (61571073), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201800601)
  • 摘要:

    在虛擬化網(wǎng)絡(luò)切片場(chǎng)景中,底層物理網(wǎng)絡(luò)中一個(gè)物理節(jié)點(diǎn)(PN)或一條物理鏈路(PL)的異常會(huì)造成多個(gè)網(wǎng)絡(luò)切片的性能退化。因網(wǎng)絡(luò)中每個(gè)時(shí)刻都會(huì)產(chǎn)生新的測(cè)量數(shù)據(jù),該文設(shè)計(jì)了兩種在線異常檢測(cè)算法實(shí)時(shí)監(jiān)督物理網(wǎng)絡(luò)的工作狀態(tài)。首先,該文提出了一種基于在線一類支持向量機(jī)(OCSVM)的PN異常檢測(cè)算法,該算法可根據(jù)每個(gè)時(shí)刻虛擬節(jié)點(diǎn)(VNs)的新測(cè)量數(shù)據(jù)進(jìn)行模型參數(shù)的更新而不需要任何標(biāo)簽數(shù)據(jù);其次,基于虛擬鏈路兩端點(diǎn)間測(cè)量數(shù)據(jù)的自然相關(guān)性,該文提出基于在線典型相關(guān)分析(CCA)的PL異常檢測(cè)算法,該算法只需要少量標(biāo)簽數(shù)據(jù)就可以準(zhǔn)確分析出PL的異常情況。仿真結(jié)果驗(yàn)證了該文所提在線異常檢測(cè)算法的有效性和魯棒性。

  • 圖  1  網(wǎng)絡(luò)切片管理示意圖

    圖  2  在線OCSVM算法和經(jīng)典OCSVM算法的性能對(duì)比圖

    圖  3  在線OCSVM算法中${{w}}$$\rho $的收斂過(guò)程

    圖  4  在線CCA算法和CCA算法的性能對(duì)比圖

    圖  5  在線異常檢測(cè)算法在真實(shí)網(wǎng)絡(luò)數(shù)據(jù)集上的性能對(duì)比圖

    表  1  基于在線OCSVM的PN異常檢測(cè)算法

     初始化:總迭代次數(shù)$T$,特征空間維度$D$,隨機(jī)初始化PN $q(0 \le q \le Q)$的估計(jì)值${{{w}}_q}(0),{\rho _q}(0)$和${\xi _q}(0)$
     (1) for $t = 0,1,2,···,T$ do
     (2) PN $q$產(chǎn)生新的訓(xùn)練樣本${{{x}}_q}(t)$,使用隨機(jī)近似函數(shù)計(jì)算$\varphi ({{{x}}_q}(t))$的近似值${z_q}(t)$
     (3) 根據(jù)式(8a)、式(8b)和式(8c)計(jì)算${{\text{?}} _{ { {{w} }_q} } }{f_q}(t),{{\text{?}}_{ {\rho _q} } }{f_q}(t)$和${{\text{?}} _{ {\xi _q} } }{f_q}(t)$
     (4) 根據(jù)式(7a)、式(7b)和式(7c)計(jì)算${{{w}}_q}(t),{\rho _q}(t)$和${\xi _q}(t)$
     (5) 計(jì)算$g({{{x}}_q}(t)) = {\rm{sgn}} ({{{w}}^{\rm{T}}}(t) \cdot {{{z}}_q}(t) - \rho (t))$
     (6)  if $g({{{x}}_q}(t)) = = 1$ then
     (7)   判定當(dāng)前時(shí)刻PN $q$為正常節(jié)點(diǎn),更新參數(shù)${{{w}}_q}(t),{\rho _q}(t)$和${\xi _q}(t)$
     (8)  else
     (9)  判定當(dāng)前時(shí)刻PN $q$為異常節(jié)點(diǎn),保留$t - 1$時(shí)刻參數(shù)值,丟棄當(dāng)前值
     (10) end for
    下載: 導(dǎo)出CSV

    表  2  基于在線CCA的PL異常檢測(cè)算法

     初始化:初始標(biāo)簽采樣個(gè)數(shù)$t$,映射到物理路徑${\rm{P}}{{\rm{N}}_m}\mathop \to \limits^{{\rm{P}}{{\rm{L}}_{m,m + 1}}} {\rm{P}}{{\rm{N}}_{m + 1}}$兩端的${\rm{VN}}{{\rm{F}}_l}$和${\rm{VN}}{{\rm{F}}_{l + 1}}$測(cè)量數(shù)據(jù)${{U}}(t)$和${{Y}}(t)$,控制門限值$T_{r,{\rm{cl}}}^2$,迭
     代次數(shù)$T$
     (1)計(jì)算${{U}}(t)$和${{Y}}(t)$的協(xié)方差矩陣和均值向量:${{{\varSigma}} _{{{U}}(t)}},{{{\varSigma}} _{{{Y}}(t)}},{{{\varSigma}} _{{{U}}(t){{Y}}(t)}},[{c_1}(t)\;...\;{c_p}(t)]$和$[{d_1}(t)\;...\;{d_q}(t)]$
     (2) for $t = t + 1:T$ do
     (3) 根據(jù)式(16)、式(17)計(jì)算${{{\varSigma}} _{{{U}}(t)}}$, ${{{\varSigma}} _{{{Y}}(t)}}$和${{{\varSigma}} _{{{U}}(t){{Y}}(t)}}$
     (4) 根據(jù)式(11)對(duì)矩陣${{K}}(t)$進(jìn)行奇異值分解
     (5) 根據(jù)式(12)計(jì)算典型相關(guān)變量${{J}}(t)$和${{L}}(t)$
     (6) 根據(jù)式(13)生成最優(yōu)異常檢測(cè)殘差${{r}}(t)$ 并建立${T^2}$檢驗(yàn):$T_{r(t)}^2 = {{{r}}^{\rm{T}}}(t){{\varSigma}} _{r(t)}^{ - 1}{{r}}(t)$
     (7) if $T_{r(t)}^2 \le T_{r,{\rm{cl} } }^2$ then
     (8)   判定${\rm{P}}{{\rm{L}}_{m,m + 1}}$為正常鏈路,更新協(xié)方差矩陣和均值向量
     (9)  else
     (10)   判定${\rm{P}}{{\rm{L}}_{m,m + 1}}$為異常鏈路,保留上一時(shí)刻協(xié)方差矩陣和均值向量,丟棄當(dāng)前值
     (11) end for
    下載: 導(dǎo)出CSV

    表  3  仿真參數(shù)

    參數(shù)數(shù)值
    每條SFC包含的VNF數(shù)4~6個(gè)
    EMBB(到達(dá)率,數(shù)據(jù)包大小)(10 packets/s,200 kbit/packets)
    URLLC(到達(dá)率,數(shù)據(jù)包大小)(100 packets/s,10 kbit/packets)
    MMTC(到達(dá)率,數(shù)據(jù)包大小)(500 packets/s,1 kbit/packets)
    特征空間維度($D$)100
    初始標(biāo)簽采樣個(gè)數(shù)($t$)10
    下載: 導(dǎo)出CSV
  • ORDONEZ-LUCENA J, AMEIGEIRAS P, LOPEZ D, et al. Network Slicing for 5G with SDN/NFV: Concepts, architectures, and challenges[J]. IEEE Communications Magazine, 2017, 55(5): 80–87. doi: 10.1109/MCOM.2017.1600935
    ELAYOUBI S E, JEMAA S B, ALTMAN Z, et al. 5G RAN slicing for verticals: Enablers and challenges[J]. IEEE Communications Magazine, 2019, 57(1): 28–34. doi: 10.1109/MCOM.2018.1701319
    OI A, ENDOU D, MORIYA T, et al. Method for estimating locations of service problem causes in service function chaining[C]. 2015 IEEE Global Communications Conference, San Diego, USA, 2016. doi: 10.1109/GLOCOM.2015.7416993.
    YOUSAF F Z, BREDEL M, SCHALLER S, et al. NFV and SDN - key technology enablers for 5G networks[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2468–2478. doi: 10.1109/JSAC.2017.2760418
    陳前斌, 楊友超, 周鈺, 等. 基于隨機(jī)學(xué)習(xí)的接入網(wǎng)服務(wù)功能鏈部署算法[J]. 電子與信息學(xué)報(bào), 2019, 41(2): 417–423. doi: 10.11999/JEIT180310

    CHEN Qianbin, YANG Youchao, ZHOU Yu, et al. Deployment algorithm of service function chain of access network based on stochastic learning[J]. Journal of Electronics &Information Technology, 2019, 41(2): 417–423. doi: 10.11999/JEIT180310
    COTRONEO D, NATELLA R, and ROSIELLO S. A fault correlation approach to detect performance anomalies in virtual network function chains[C]. The 2017 IEEE 28th International Symposium on Software Reliability Engineering, Toulouse, France, 2017. doi: 10.1109/ISSRE.2017.12.
    SCH?LKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443–1471. doi: 10.1162/089976601750264965
    JIANG Qingchao and YAN Xuefeng. Multimode process monitoring using variational bayesian inference and canonical correlation analysis[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(4): 1814–1824. doi: 10.1109/TASE.2019.2897477
    LI Xiaocan, XIE Kun, WANG Xin, et al. Online internet anomaly detection with high accuracy: A fast tensor factorization solution[C]. IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 2019: 1900–1908. doi: 10.1109/INFOCOM.2019.8737562.
    DE LA OLIVA A, LI Xi, COSTA-PEREZ X, et al. 5G-TRANSFORMER: Slicing and orchestrating transport networks for industry verticals[J]. IEEE Communications Magazine, 2018, 56(8): 78–84. doi: 10.1109/MCOM.2018.1700990
    MIAO Xuedan, LIU Ying, ZHAO Haiquan, et al. Distributed online one-class support vector machine for anomaly detection over networks[J]. IEEE Transactions on Cybernetics, 2019, 49(4): 1475–1488. doi: 10.1109/TCYB.2018.2804940
    RAHIMI A and RECHT B. Random features for large-scale kernel machines[C]. The 20th International Conference on Neural Information Processing Systems, Charlotte, USA, 2007.
    SHALEV-SHWARTZ S, SINGER Y, and SREBRO N. Pegasos: Primal estimated sub-GrAdient sOlver for SVM[C]. The 24th International Conference on Machine learning, Corvallis, USA, 2007. doi: 10.1145/1273496.1273598.
    JIANG Qingchao, DING S X, WANG Yang, et al. Data-driven distributed local fault detection for large-scale processes based on the GA-regularized canonical correlation analysis[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8148–8157. doi: 10.1109/TIE.2017.2698422
    任馳, 馬瑞濤. 網(wǎng)絡(luò)切片: 構(gòu)建可定制化的5G網(wǎng)絡(luò)[J]. 中興通訊技術(shù), 2018, 24(1): 26–30. doi: 10.3969/j.issn.1009-6868.2018.01.006

    REN Chi and MA Ruitao. Network slicing: Building customizable 5G network[J]. ZTE Technology Journal, 2018, 24(1): 26–30. doi: 10.3969/j.issn.1009-6868.2018.01.006
    XIE Kun, LI Xiaocan, WANG Xin, et al. On-line anomaly detection with high accuracy[J]. IEEE/ACM transactions on networking, 2018, 26(3): 1222–1235. doi: 10.1109/TNET.2018.2819507
    FU Songwei and ZHANG Yan. The due/packet-delivery (v. 2015-04-01)[EB/OL]. https://doi.org/10.15783/C7NP4Z, 2015.
  • 加載中
圖(5) / 表(3)
計(jì)量
  • 文章訪問(wèn)數(shù):  2838
  • HTML全文瀏覽量:  1034
  • PDF下載量:  92
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-07-15
  • 修回日期:  2020-02-12
  • 網(wǎng)絡(luò)出版日期:  2020-03-03
  • 刊出日期:  2020-06-22

目錄

    /

    返回文章
    返回