脈沖噪聲下基于循環(huán)相關(guān)熵和稀疏重構(gòu)的寬帶信號DOA估計
doi: 10.11999/JEIT190521 cstr: 32379.14.JEIT190521
-
1.
大連理工大學(xué)電子信息與電氣工程學(xué)部 大連 116024
-
2.
江蘇師范大學(xué)電氣工程及自動化學(xué)院 徐州 221116
-
3.
國家無線電監(jiān)測中心 北京 100037
Wideband DOA Estimation via Cyclic Correntropy and Sparse Reconstruction in the Presence of Impulsive Noise
-
1.
Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
-
2.
School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou 221116, China
-
3.
The State Radio Monitoring Center, Beijing 100037, China
-
摘要: 針對脈沖噪聲與同頻帶干擾并存時寬帶信號的波達方向(DOA)估計問題,該文提出一種結(jié)合循環(huán)相關(guān)熵(CCE)與稀疏重構(gòu)的算法。首先,分析了寬帶信源的接收信號模型,并利用循環(huán)相關(guān)熵的性質(zhì)構(gòu)造出對脈沖噪聲與同頻帶干擾具有抑制能力的寬帶信號虛擬輸出陣列。隨后對該虛擬輸出陣列進行稀疏表示,并通過歸一化迭代硬閾值(NIHT)算法進行稀疏重構(gòu),從而估計寬帶信號的波達方向。實驗結(jié)果表明,該算法對脈沖噪聲和同頻帶干擾具有很好的抑制作用,并且相較已有算法在估計性能方面有明顯的改善。
-
關(guān)鍵詞:
- 寬帶DOA /
- 脈沖噪聲 /
- 循環(huán)相關(guān)熵 /
- 稀疏重構(gòu)
Abstract: To deal with wideband band Direction Of Arrival (DOA) estimation in the presence of impulsive noise and co-channel interferences, a novel method is proposed with the help of Cyclic CorrEntropy (CCE) and sparse reconstruction. Firstly, the received signal model of wideband sources is analyzed and a virtual array output is constructed, which shows resistance to impulsive noise and co-channel interferences via the characteristics of CCE. Then, to extract the DOA of wideband signals, the virtual array output with a sparse structure is represented and the Normalized Iterative Hard Thresholding (NIHT) is utilized to solve the sparse reconstruction problem. Comprehensive simulation results demonstrate that the proposed method has efficient suppression on impulsive noise and co-channel interference and it can improve both accuracy and efficiency than existing methods.-
Key words:
- Wideband DOA /
- Impulsive noise /
- Cyclic CorrEntropy (CCE) /
- Sparse reconstruction
-
KRIM H and VIBERG M. Two decades of array signal processing research: The parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67–94. doi: 10.1109/79.526899 SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830 ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276 MALIOUTOV D, CETIN M, and WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010–3022. doi: 10.1109/tsp.2005.850882 HU Na, YE Zhongfu, XU Xu, et al. DOA estimation for sparse array via sparse signal reconstruction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 760–773. doi: 10.1109/TAES.2013.6494379 WU Xiaohuan, ZHU Weiping, YAN Jun, et al. Two sparse-based methods for off-grid direction-of-arrival estimation[J]. Signal Processing, 2018, 142: 87–95. doi: 10.1016/j.sigpro.2017.07.004 郭英, 東潤澤, 張坤峰, 等. 基于稀疏貝葉斯學(xué)習(xí)的多跳頻信號DOA估計方法[J]. 電子與信息學(xué)報, 2019, 41(3): 516–522. doi: 10.11999/JEIT180435GUO Ying, DONG Runze, ZHANG Kunfeng, et al. Direction of arrival estimation for multiple frequency hopping signals based on sparse bayesian learning[J]. Journal of Electronics &Information Technology, 2019, 41(3): 516–522. doi: 10.11999/JEIT180435 XU G and KAILATH T. Direction-of-arrival estimation via exploitation of cyclostationary-a combination of temporal and spatial processing[J]. IEEE Transactions on Signal Processing, 1992, 40(7): 1775–1786. doi: 10.1109/78.143448 XIN Jingmin and SANO A. MSE-based regularization approach to direction estimation of coherent narrowband signals using linear prediction[J]. IEEE Transactions on Signal Processing, 2001, 49(11): 2481–2497. doi: 10.1109/78.960396 LIU Zhangmeng, HUANG Zhitao, and ZHOU Yiyu. Direction-of-arrival estimation of wideband signals via covariance matrix sparse representation[J]. IEEE Transactions on Signal processing, 2011, 59(9): 4256–4270. doi: 10.1109/tsp.2011.2159214 HE Zhenqing, SHI Zhiping, HUANG Lei, et al. Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting[J]. IEEE Signal Processing Letters, 2015, 22(4): 435–439. doi: 10.1109/LSP.2014.2358084 BUTTON M D, GARDINER J G, and GLOVER I A. Measurement of the impulsive noise environment for satellite-mobile radio systems at 1.5 GHz[J]. IEEE Transactions on Vehicular Technology, 2002, 51(3): 551–560. doi: 10.1109/tvt.2002.1002503 BLACKARD K L, RAPPAPORT T S, and BOSTIAN C W. Measurements and models of radio frequency impulsive noise for indoor wireless communications[J]. IEEE Journal on Selected Areas in Communications, 1993, 11(7): 991–1001. doi: 10.1109/49.233212 NIKIAS C L and SHAO Min. Signal Processing with Alpha-Stable Distributions and Applications[M]. New York: Wiley & Sons, 1995. JIN Fangxiao, QIU Tianshuang, LUAN Shengyang, et al. Joint Estimation of the DOA and the number of sources for wideband signals using cyclic correntropy[J]. IEEE Access, 2019, 7: 42482–42494. doi: 10.1109/ACCESS.2019.2904287 LUAN Shengyang, QIU Tianshuang, ZHU Yongjie, et al. Cyclic correntropy and its spectrum in frequency estimation in the presence of impulsive noise[J]. Signal Processing, 2016, 120: 503–508. doi: 10.1016/j.sigpro.2015.09.023 BLUMENSATH T and DAVIES M E. Normalized iterative hard thresholding: Guaranteed stability and performance[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 298–309. doi: 10.1109/JSTSP.2010.2042411 -