基于自適應(yīng)的增廣狀態(tài)-交互式多模型的機(jī)動(dòng)目標(biāo)跟蹤算法
doi: 10.11999/JEIT190516 cstr: 32379.14.JEIT190516
-
1.
海軍工程大學(xué)電子工程學(xué)院 武漢 430033
-
2.
空軍預(yù)警學(xué)院 武漢 430019
-
3.
中山大學(xué)電子與通信工程學(xué)院 廣州 510006
Maneuvering Target Tracking Algorithm Based on the Adaptive Augmented State Interracting Multiple Model
-
1.
College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China
-
2.
Air Force Early Warning Academy, Wuhan 430019, China
-
3.
School of Electronics and Communication Engineering, Sun Yat-sen University, Guangzhou 510006, China
-
摘要: 現(xiàn)有的增廣狀態(tài)-交互式多模型算法存在著依賴于量測(cè)噪聲協(xié)方差矩陣這一先驗(yàn)信息的問題。當(dāng)先驗(yàn)信息未知或不準(zhǔn)確時(shí),算法的跟蹤性能將會(huì)下降。針對(duì)上述問題,該文提出一種自適應(yīng)的變分貝葉斯增廣狀態(tài)-交互式多模型算法VB-AS-IMM。首先,針對(duì)增廣狀態(tài)的跳變馬爾科夫系統(tǒng),該文給出了聯(lián)合估計(jì)增廣狀態(tài)和量測(cè)噪聲協(xié)方差矩陣的變分貝葉斯推斷概率模型。其次,通過理論推導(dǎo)證明了該概率模型是非共軛的。最后,通過引入一種“信息反饋+后處理”方案,提出聯(lián)合后驗(yàn)密度的次優(yōu)求解方法。所提算法能夠在線估計(jì)未知的量測(cè)噪聲協(xié)方差矩陣,具有更強(qiáng)的魯棒性和適應(yīng)性。仿真結(jié)果驗(yàn)證了算法的有效性。
-
關(guān)鍵詞:
- 機(jī)動(dòng)目標(biāo)跟蹤 /
- 交互式多模型 /
- 增廣狀態(tài) /
- 變分貝葉斯 /
- 自適應(yīng)濾波
Abstract: The existing Augmented State-Interracting Multiple Model (AS-IMM) algorithm suffers from the problem that it relies on the prior information of the covariance matrix of the measurement noise. When the prior information is unavailable or inaccurate, the tracking performance of AS-IMM will be degraded. In order to overcome this problem, a novel adaptive Bayesian Variational Augmented State-Interracting Multiple Model (VB-AS-IMM) algorithm is proposed. Firstly, the variational Bayesian inference probabilistic model of the augmented state and the covariance matrix of the measurement noise for the jump Markovarian system is presented. Secondly, the probabilistic model is proven to be non-conjugated. Finally, by introducing a novel post processing method, the suboptimal solution to calculate the joint posterior distribution is proposed. The proposed algorithm can estimate the unknown covariance matrix of the measurement noise online, thus it is more robust and has higher adaptability. Simulation result verifies good performance of the proposed algorithm. -
表 1 算法的平均RMSE
算法 位置RMSE(m) 速度RMSE(m/s) MIMM 131.69 2.37 IMM 191.91 3.37 MAS-IMM 78.90 0.95 AS-IMM 90.94 1.47 VB-AS-IMM 79.74 0.96 下載: 導(dǎo)出CSV
-
BLOM H A P and BAR-SHALOM Y. The interacting multiple model algorithm for systems with Markovian switching coefficients[J]. IEEE Transactions on Automatic Control, 1988, 33(8): 780–783. doi: 10.1109/9.1299 CHANG C B and ATHANS M. State estimation for discrete systems with switching parameters[J]. IEEE Transactions on Aerospace and Electronic Systems, 1978, AES–14(3): 418–425. doi: 10.1109/TAES.1978.308603 ANDERSON B D O and MOORE J B. Optimal Filtering[M]. Englewood Cliffs: Prentice-Hall, 1979: 165–190. RAUCH H. Solutions to the linear smoothing problem[J]. IEEE Transactions on Automatic Control, 1963, 8(4): 371–372. doi: 10.1109/TAC.1963.1105600 KELLY C N and ANDERSON B D O. On the stability of fixed-lag smoothing algorithms[J]. Journal of the Franklin Institute, 1971, 291(4): 271–281. doi: 10.1016/0016-0032(71)90183-9 MOORE J B. Discrete-time fixed-lag smoothing algorithms[J]. Automatica, 1973, 9(2): 163–174. doi: 10.1016/0005-1098(73)90071-X MATHEWS V J and TUGNAIT J K. Detection and estimation with fixed lag for abruptly changing systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES–19(5): 730–739. doi: 10.1109/TAES.1983.309374 CHEN Bing and TUGNAIT J K. Interacting multiple model fixed-lag smoothing algorithm for Markovian switching systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(1): 243–250. doi: 10.1109/7.826326 MORELANDE M R and RISTIC B. Smoothed state estimation for nonlinear Markovian switching systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(4): 1309–1325. doi: 10.1109/TAES.2008.4667711 LOPEZ R and DANèS P. Low-complexity IMM smoothing for jump Markov nonlinear systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1261–1272. doi: 10.1109/TAES.2017.2669698 BLEI D M, KUCUKELBIR A, and MCAULIFFE J D. Variational inference: A review for statisticians[J]. Journal of The American Statistical Association, 2017, 112(518): 859–877. doi: 10.1080/01621459.2017.1285773 TZIKAS D G, LIKAS A C, and GALATSANOS N P. The variational approximation for bayesian inference[J]. IEEE Signal Processing Magazine, 2008, 25(6): 131–146. doi: 10.1109/MSP.2008.929620 SARKKA S and NUMMENMAA A. Recursive noise adaptive kalman filtering by variational bayesian approximations[J]. IEEE Transactions on Automatic Control, 2009, 54(3): 596–600. doi: 10.1109/TAC.2008.2008348 AGAMENNONI G, NIETO J I, and NEBOT E M. Approximate inference in state-space models with heavy-tailed noise[J]. IEEE Transactions on Signal Processing, 2012, 60(10): 5024–5036. doi: 10.1109/TSP.2012.2208106 MA Yanjun, ZHAO Shunyi, and HUANG Biao. Multiple-model state estimation based on variational Bayesian inference[J]. IEEE Transactions on Automatic Control, 2019, 64(4): 1679–1685. doi: 10.1109/TAC.2018.2854897 DONG Peng, JING Zhongliang, and LEUNG H. Variational bayesian adaptive Cubature information filter based on Wishart distribution[J]. IEEE Transactions on Automatic Control, 2017, 62(11): 6051–6057. doi: 10.1109/TAC.2017.2704442 XU Hong, XIE Wenchong, YUAN Huadong, et al. Fixed-point iteration Gaussian sum filtering estimator with unknown time-varying non-Gaussian measurement noise[J]. Signal Processing, 2018, 153: 132–142. doi: 10.1016/j.sigpro.2018.07.017 LI Xiaorong and JILKOV V P. Survey of maneuvering target tracking. Part I. Dynamic models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1333–1364. doi: 10.1109/TAES.2003.1261132 ZHOU Gongjian, GUO Zhengkun, CHEN Xi, et al. Statically fused converted measurement Kalman filters for phased-array radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2): 554–568. doi: 10.1109/TAES.2017.2760798 -