一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

異構(gòu)蜂窩網(wǎng)絡(luò)中基于能效的非正交多址接入下行功率分配算法

張雙 康桂霞

張雙, 康桂霞. 異構(gòu)蜂窩網(wǎng)絡(luò)中基于能效的非正交多址接入下行功率分配算法[J]. 電子與信息學(xué)報(bào), 2020, 42(11): 2656-2663. doi: 10.11999/JEIT190492
引用本文: 張雙, 康桂霞. 異構(gòu)蜂窩網(wǎng)絡(luò)中基于能效的非正交多址接入下行功率分配算法[J]. 電子與信息學(xué)報(bào), 2020, 42(11): 2656-2663. doi: 10.11999/JEIT190492
Shuang ZHANG, Guixia KANG. Energy Efficient Power Allocation with NOMA in Downlink Heterogeneous Networks[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2656-2663. doi: 10.11999/JEIT190492
Citation: Shuang ZHANG, Guixia KANG. Energy Efficient Power Allocation with NOMA in Downlink Heterogeneous Networks[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2656-2663. doi: 10.11999/JEIT190492

異構(gòu)蜂窩網(wǎng)絡(luò)中基于能效的非正交多址接入下行功率分配算法

doi: 10.11999/JEIT190492 cstr: 32379.14.JEIT190492
基金項(xiàng)目: 國家重大專項(xiàng)(2017ZX03001022)
詳細(xì)信息
    作者簡介:

    張雙:女,1989年生,博士生,研究方向?yàn)楫悩?gòu)網(wǎng)絡(luò)、非正交多址接入技術(shù)、綠色蜂窩網(wǎng)絡(luò)

    康桂霞:女,1972年生,博士生導(dǎo)師,研究方向?yàn)橐苿?dòng)物聯(lián)通信、大數(shù)據(jù)人工智能技術(shù)

    通訊作者:

    康桂霞 gxkang@bupt.edu.cn

  • 中圖分類號(hào): TN929.5

Energy Efficient Power Allocation with NOMA in Downlink Heterogeneous Networks

Funds: The National Science and Technology Major Project of China (2017ZX03001022)
  • 摘要: 該文針對應(yīng)用非正交多址接入(NOMA)技術(shù)的異構(gòu)蜂窩網(wǎng)絡(luò),在考慮層間層內(nèi)干擾的情況下,提出一種能效最大化的功率分配算法。該算法主要包括兩部分,一部分為子信道內(nèi)用戶功率分配因子的求解,主要利用差分優(yōu)化的方法,迭代求解。另一部分為子信道間的功率分配,主要利用凹凸程序法將原有的非凸問題簡化為可解的凸問題,最后利用拉格朗日求解法得出功率最優(yōu)解。仿真結(jié)果表明該算法有良好的迭代性,且新算法表明利用NOMA技術(shù)得到的系統(tǒng)能效較利用正交技術(shù)得到的系統(tǒng)能效提高了至少44%以上。
  • 圖  1  不同最大發(fā)送功率下的能效值

    圖  2  不同用戶速率要求下的能效值

    圖  3  算法收斂性能

    表  1  子信道內(nèi)用戶功率分配因子算法

     DC programing功率分配因子算法
     1.初始化:設(shè)置${(\alpha _f^n)^c}$的初始值;設(shè)置迭代索引$c = 0$;設(shè)置最大迭代次數(shù)${C_{\max }}$以及容忍度$\mu $的值;計(jì)算式
      $q({(\alpha _f^n)^0}) = f({(\alpha _f^n)^0}) - g({(\alpha _f^n)^0})$的值。
     2. repeat
     3. 計(jì)算式(8)獲取最優(yōu)功率分配因子${(\alpha _f^n)^*}$
     4. $c = c + 1$,${(\alpha _f^n)^c} = {(\alpha _f^n)^*}$,計(jì)算$q({(\alpha _f^n)^c}) = f({(\alpha _f^n)^c}) - g({(\alpha _f^n)^c})$
     5. until $\left| {q({{(\alpha _f^n)}^c}) - q({{(\alpha _f^n)}^{c - 1}})} \right| \le \mu $ or $c > {C_{\max }}$
     6. ${(\alpha _f^n)^*} = {(\alpha _f^n)^c}$
    下載: 導(dǎo)出CSV

    表  2  子信道間功率分配算法

     CCCP信道功率分配算法
     1:初始化 設(shè)置迭代索引$v = 0$,誤差容忍度$\xi > 0$。設(shè)置初始化${{{P}}^0}$,最大迭代次數(shù)${V_{\max }}$,計(jì)算${\left( {\lambda _f^n} \right)^0} = {1 / {\left( {{{\left( {p_f^n} \right)}^0} + {p_c}} \right)}}$,
       ${(\gamma _f^n)^0} = {{R_f^n\left( {{{(p_f^n)}^0}} \right)} / {\left( {{{(p_f^n)}^0} + {p_c}} \right)}}$
     2: repeat
     3:利用拉格朗日對偶求解${\left( {{{{P}}^*}} \right)^v}$即${{{P}}^{v + 1}}$其中${\left( {{{{P}}^*}} \right)^v}$滿足式(35)和式(36)。
     4:根據(jù)式(12)更新${(\lambda _f^n)^{v + 1}}$和${(\gamma _f^n)^{v + 1}}$的值。
     5:設(shè)置$v = v + 1$
     6: until $\left| {\mathop {\max }\limits_{{P} } \left\{ {\displaystyle\sum\limits_{f = 1}^F { { {(\lambda _f^n)}^v}[R_f^n({ {(p_f^n)}^v})(1 + { {\beta \left( { { {(p_f^n)}^v} + {p_c} } \right)} / B}) - { {(\gamma _f^n)}^v}({ {(p_f^n)}^v} + {p_c})]} } \right\} } \right| \le \xi$ or $v > {V_{\max }}$
    下載: 導(dǎo)出CSV
  • DAMNJANOVIC A, MONTOJO J, WEI Yongbin, et al. A survey on 3GPP heterogeneous networks[J]. IEEE Wireless Communications, 2011, 18(3): 10–21. doi: 10.1109/MWC.2011.5876496
    DAI Linglong, WANG Bichai, DING Zhiguo, et al. A survey of non-orthogonal multiple access for 5G[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2294–2323. doi: 10.1109/COMST.2018.2835558
    FANG Fang, CHENG Julian, and DING Zhiguo. Joint energy efficient subchannel and power optimization for a downlink NOMA heterogeneous network[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1351–1364. doi: 10.1109/TVT.2018.2881314
    MOKDAD A, AZMI P, and MOKARI N. Radio resource allocation for heterogeneous traffic in GFDM-NOMA heterogeneous cellular networks[J]. IET Communications, 2016, 10(12): 1444–1455. doi: 10.1049/iet-com.2016.0011
    SONG Zhengyu, NI Qiang, and SUN Xin. Distributed power allocation for nonorthogonal multiple access heterogeneous networks[J]. IEEE Communications Letter, 2018, 22(3): 622–625. doi: 10.1109/LCOMM.2017.2789282
    NASSER A, MUTA O, ELSABROUTY M, et al. Compressive sensing based spectrum allocation and power control for NOMA HetNets[J]. IEEE Access, 2019, 7: 98495–98506. doi: 10.1109/ACCESS.2019.2929185
    NI Dadong, HAO Li, TRAN Q T, et al. Power allocation for downlink NOMA heterogeneous networks[J]. IEEE Access, 2018, 6: 26742–26752. doi: 10.1109/ACCESS.2018.2835568
    STEFANO B, CHIH L I, THIERR Y E, et al. A survey of energy-efficient techniques for 5G networks and challenges ahead[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(4): 697–709. doi: 10.1109/JSAC.2016.2550338
    QIN Zhijin, YUE Xinwei, LIU Yuanwei, et al. User association and resource allocation in unified NOMA enabled heterogeneous Ultra dense networks[J]. IEEE Communications Magazine, 2018, 56(6): 86–92. doi: 10.1109/MCOM.2018.1700497
    AN L T H and TAO P D. The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems[J]. Annals of Operations Research, 2005, 133(1): 23–46. doi: 10.1007/s10479-004-5022-1
    SRIPERUMBUDUR B K and LANCKRIET G R G. On the convergence of the concave-convex procedure[C]. The 22nd International Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2009: 1759–1767.
    FANG Fang, ZHANG Haijun, CHENG Julian, et al. Energy efficiency of resource scheduling for non-orthogonal multiple access (NOMA) wireless network[C]. 2016 IEEE International Conference on Communications, Kuala Lumpur, Malaysia, 2016: 1–5. doi: 10.1109/ICC.2016.7511239.
    CHEN Qimei, YU Guanding, YIN Rui, et al. Energy-efficient user association and resource allocation for multistream carrier aggregation[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6366–6376. doi: 10.1109/TVT.2015.2472558
    BAZARAA M S, SHERALI H D, and SHETTY C M. Nonlinear Programming: Theory and Algorithms[M]. 3rd ed. New York: Wiley, 2013.
    YE Qiaoyang, RONG Beiyu, CHEN Yudong, et al. User association for load balancing in heterogeneous cellular networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(6): 2706–2716. doi: 10.1109/TWC.2013.040413.120676
    KHA H H, TUAN H D, and NGUYEN H H. Fast global optimal power allocation in wireless networks by local D.C. programming[J]. IEEE Transactions on Wireless Communications, 2012, 11(2): 510–515. doi: 10.1109/TWC.2011.120911.110139
  • 加載中
圖(3) / 表(2)
計(jì)量
  • 文章訪問數(shù):  1522
  • HTML全文瀏覽量:  700
  • PDF下載量:  70
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-07-02
  • 修回日期:  2020-04-13
  • 網(wǎng)絡(luò)出版日期:  2020-08-31
  • 刊出日期:  2020-11-16

目錄

    /

    返回文章
    返回