一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

動態(tài)背景下基于低秩及稀疏分解的動目標(biāo)檢測方法

王洪雁 張海坤

王洪雁, 張海坤. 動態(tài)背景下基于低秩及稀疏分解的動目標(biāo)檢測方法[J]. 電子與信息學(xué)報, 2020, 42(11): 2788-2795. doi: 10.11999/JEIT190452
引用本文: 王洪雁, 張海坤. 動態(tài)背景下基于低秩及稀疏分解的動目標(biāo)檢測方法[J]. 電子與信息學(xué)報, 2020, 42(11): 2788-2795. doi: 10.11999/JEIT190452
Hongyan WANG, Haikun ZHANG. Moving Object Detection Method Based on Low-Rank and Sparse Decomposition in Dynamic Background[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2788-2795. doi: 10.11999/JEIT190452
Citation: Hongyan WANG, Haikun ZHANG. Moving Object Detection Method Based on Low-Rank and Sparse Decomposition in Dynamic Background[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2788-2795. doi: 10.11999/JEIT190452

動態(tài)背景下基于低秩及稀疏分解的動目標(biāo)檢測方法

doi: 10.11999/JEIT190452 cstr: 32379.14.JEIT190452
基金項目: 國家自然科學(xué)基金(61301258, 61271379),中國博士后科學(xué)基金(2016M590218),重點實驗室基金(61424010106),河南省高等學(xué)校重點科研項目支持計劃(14A520079),河南省科技攻關(guān)計劃(162102210168)
詳細(xì)信息
    作者簡介:

    王洪雁:男,1979年生,副教授,博士,主要研究方向為MIMO雷達(dá)信號處理,毫米波通信,機(jī)器視覺

    張海坤:男,1995年生,碩士生,主要研究方向為圖像處理,計算機(jī)視覺

    通訊作者:

    王洪雁 gglongs@163.com

  • 中圖分類號: TN911.73; TP391

Moving Object Detection Method Based on Low-Rank and Sparse Decomposition in Dynamic Background

Funds: The National Natural Science Foundation of China (61301258, 61271379), China Postdoctoral Science Foundation (2016M590218), The Key Laboratory Foundation (61424010106), The Henan Province Support Plans for Key Scientific Research Projects of Colleges and Universities (14A520079), The Henan Province Plans for Science and Technology Development (162102210168)
  • 摘要: 針對背景運動引起動目標(biāo)檢測精度顯著下降的問題,該文提出一種基于低秩及稀疏分解的動目標(biāo)檢測方法。所提方法首先引入伽馬范數(shù)($\gamma {\rm{ - norm}}$)近乎無偏地逼近秩函數(shù)以解決核范數(shù)過度懲罰較大奇異值從而導(dǎo)致所得最小化問題無法獲得最優(yōu)解進(jìn)而降低檢測性能的問題,而后利用${L_{{1 / 2}}}$范數(shù)抽取稀疏前景目標(biāo)以增強(qiáng)對噪聲的穩(wěn)健性,同時基于虛警像素所具有稀疏且空間不連續(xù)特性提出空間連續(xù)性約束以抑制動態(tài)背景像素,進(jìn)而構(gòu)建目標(biāo)檢測模型。最后利用基于交替方向最小化(ADM)策略擴(kuò)展的增廣拉格朗日乘子(ALM)法對所得優(yōu)化問題求解。實驗結(jié)果表明,與現(xiàn)有主流算法對比,所提方法可顯著改善動態(tài)背景情況下動目標(biāo)檢測精度。
  • 圖  1  不同場景下F-measure隨$\gamma $取值變化曲線

    圖  2  檢測結(jié)果對比

    圖  3  動目標(biāo)檢測定量分析對比

    圖  4  各部分性能提升對比

    表  1  低秩與稀疏分解動目標(biāo)檢測方法

     算法:使用ADM策略擴(kuò)展的ALM法求解問題式(7)
     輸入:觀測矩陣${{Z}}$,參數(shù)$\gamma $, ${\lambda _1}$, ${\lambda _2}$, ${\mu _1}$, ${\mu _2}$和$\varphi $。
     輸出:${{H}}$, ${{K}}$和${{G}}$。
     (1):固定其他變量,計算式(12)以更新變量${{H}}$;
     (2):固定其他變量,由式(17)更新變量${{K}}$;
     (3):固定其他變量,計算式(22)以更新變量${{G}}$;
     (4):由式(23)和式(24)更新拉格朗日乘子${{{Y}}_1}$和${{{Y}}_2}$;
     (5):重復(fù)步驟(1)—(4),直至滿足收斂條件。
    下載: 導(dǎo)出CSV

    表  2  不同場景下6種算法評價指標(biāo)平均值

    評價指標(biāo)PCPMoGPRMFDECBRPCA本文算法
    Precision0.47150.48960.55560.69380.79080.8967
    Recall0.78880.79780.81930.91990.89530.9181
    F-measure0.54400.58850.63870.76430.83330.9022
    下載: 導(dǎo)出CSV

    表  3  不同動目標(biāo)檢測算法平均運行時間對比(s)

    算法PCPMoGPRMFDECBRPCA本文算法
    運行時間541.55177.70105.31288.366161.29498.42
    下載: 導(dǎo)出CSV
  • LUO Yuan, ZHOU Hanxing, TAN Qin, et al. Key frame extraction of surveillance video based on moving object detection and image similarity[J]. Pattern Recognition and Image Analysis, 2018, 28(2): 225–231. doi: 10.1134/S1054661818020190
    SENTHIL M A, SUGANYA D K, SIVARANJANI A, et al. A study on various methods used for video summarization and moving object detection for video surveillance applications[J]. Multimedia Tools and Applications, 2018, 77(3): 23273–23290. doi: 10.1007/s11042-018-5671-8
    CHEN Changhong, LIANG Jimin, ZHAO Heng, et al. Frame difference energy image for gait recognition with incomplete silhouettes[J]. Pattern Recognition Letters, 2009, 30(11): 977–984. doi: 10.1016/j.patrec.2009.04.012
    KE Ruimin, LI Zhibin, TANG Jinjun, et al. Real-time traffic flow parameter estimation from UAV video based on ensemble classifier and optical flow[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(1): 54–64. doi: 10.1109/TITS.2018.2797697
    YONG Hongwei, MENG Deyu, ZUO Wangmeng, et al. Robust online matrix factorization for dynamic background subtraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(7): 1726–1740. doi: 10.1109/TPAMI.2017.2732350
    LIU Hongkun, DAI Jialun, WANG Ruchen, et al. Combining background subtraction and three-frame difference to detect moving object from underwater video[C]. OCEANS 2016, Shanghai, China, 2016: 1–5.
    SEVILLA-LARA L, SUN Deqing, JAMPANI V, et al. Optical flow with semantic segmentation and localized layers[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 3889–3898.
    PRASAD D K, PRASATH C K, RAJAN D, et al. Object detection in a maritime environment: Performance evaluation of background subtraction methods[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(5): 1787–1802. doi: 10.1109/tits.2018.2836399
    ZENG Zhi, JIA Jianyuan, YU Dalin, et al. Pixel modeling using histograms based on fuzzy partitions for dynamic background subtraction[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(3): 584–593. doi: 10.1109/TFUZZ.2016.2566811
    STAUFFER C and GRIMSON W E L. Adaptive background mixture models for real-time tracking[C]. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, USA, 1999: 246–252.
    ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction[C]. The 17th International Conference on Pattern Recognition, Cambridge, UK, 2004: 28–31.
    CANDèS E J, LI Xiaodong, MA Yi, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 11. doi: 10.1145/1970392.1970395
    DING Xinghao, HE Lihan, and CARIN L. Bayesian robust principal component analysis[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3419–3430. doi: 10.1109/TIP.2011.2156801
    GAO Junbin. Robust L1 principal component analysis and its Bayesian variational inference[J]. Neural Computation, 2008, 20(2): 555–572. doi: 10.1162/neco.2007.11-06-397
    WANG Naiyan, YAO Tiansheng, WANG Jingdong, et al. A probabilistic approach to robust matrix factorization[C]. The 12th European Conference on Computer Vision, Florence, Italy, 2012: 126–139.
    ZHOU Xiaowei, YANG Can, and YU Weichuan. Moving object detection by detecting contiguous outliers in the low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3): 597–610. doi: 10.1109/TPAMI.2012.132
    WANG Yi, JODOIN P M, PORIKLI F, et al. CDnet 2014: An expanded change detection benchmark dataset[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, USA, 2014: 393–400.
    WANG Shusen, LIU Dehua, and ZHANG Zhihua. Nonconvex relaxation approaches to robust matrix recovery[C]. The 23rd International Joint Conference on Artificial Intelligence, Beijing, China, 2013: 1764–1770.
    JIA Sen, ZHANG Xiujun, and LI Qingquan. Spectral–spatial hyperspectral image classification using ?1/2 regularized low-rank representation and sparse representation-based graph cuts[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2473–2484. doi: 10.1109/JSTARS.2015.2423278
    ZHANG Hengmin, YANG Jian, XIE Jianchun, et al. Weighted sparse coding regularized nonconvex matrix regression for robust face recognition[J]. Information Sciences, 2017, 394–395: 1–17. doi: 10.1016/j.ins.2017.02.020
    CAO Wenfei, SUN Jian, and XU Zongben. Fast image deconvolution using closed-form thresholding formulas of regularization[J]. Journal of Visual Communication and Image Representation, 2013, 24(1): 31–41. doi: 10.1016/j.jvcir.2012.10.006
    CAO Xiaochun, YANG Liang, and GUO Xiaojie. Total variation regularized RPCA for irregularly moving object detection under dynamic background[J]. IEEE Transactions on Cybernetics, 2016, 46(4): 1014–1027. doi: 10.1109/TCYB.2015.2419737
    CHAMBOLLE A. An algorithm for total variation minimization and applications[J]. Journal of Mathematical Imaging and Vision, 2004, 20(1/2): 89–97. doi: 10.1023/b:jmiv.0000011325.36760.1e
    XUE Yawen, GUO Xiaojie, and CAO Xiaochun. Motion saliency detection using low-rank and sparse decomposition[C]. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012: 1485–1488.
    XU Zongben, CHANG Xiangyu, XU Fengmin, et al. L1/2 regularization: A thresholding representation theory and a fast solver[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(7): 1013–1027. doi: 10.1109/TNNLS.2012.2197412
    BECK A and TEBOULLE M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J]. IEEE Transactions on Image Processing, 2009, 18(11): 2419–2434. doi: 10.1109/TIP.2009.2028250
    MAHADEVAN V and VASCONCELOS N. Spatiotemporal saliency in dynamic scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 171–177. doi: 10.1109/TPAMI.2009.112
    GOLUB G H and REINSCH C. Singular value decomposition and least squares solutions[J]. Numerische Mathematik, 1970, 14(5): 403–420. doi: 10.1007/BF02163027
  • 加載中
圖(4) / 表(3)
計量
  • 文章訪問數(shù):  1411
  • HTML全文瀏覽量:  515
  • PDF下載量:  96
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-06-20
  • 修回日期:  2020-04-20
  • 網(wǎng)絡(luò)出版日期:  2020-08-29
  • 刊出日期:  2020-11-16

目錄

    /

    返回文章
    返回