一種基于半定松弛技術(shù)的TDOA-FDOA無源定位算法
doi: 10.11999/JEIT190435 cstr: 32379.14.JEIT190435
-
西安電子科技大學(xué)電子工程學(xué)院 西安 710071
A TDOA-FDOA Passive Positioning Algorithm Based on the Semi-Definite Relaxation Technique
-
School of Electronic Engineering, Xidian University, Xi’an 710071, China
-
摘要:
在運(yùn)動(dòng)目標(biāo)的無源定位場景下,閉式算法在低噪聲情況下可以到達(dá)克拉美羅下界(CRLB),但是這些算法往往不能適應(yīng)較大的測量噪聲環(huán)境。針對目前閉式算法適應(yīng)大噪聲能力較差這一問題,該文聯(lián)合到達(dá)時(shí)間差(TDOA)以及到達(dá)頻率差(FDOA),提出一種基于半定松弛(SDR)技術(shù)的無源定位算法。該算法首先構(gòu)建傳統(tǒng)閉式解的偽線性方程,其次利用隨機(jī)魯棒最小二乘(SRLS)的思想以及目標(biāo)參數(shù)與額外變量之間的非線性關(guān)系,將無源定位問題轉(zhuǎn)化為了具有2次等式約束的最小二乘問題;隨后,將半定松弛技術(shù)應(yīng)用到這一問題上,約束最小二乘問題松弛為半定規(guī)劃(SDP)問題,最后,借助優(yōu)化工具箱可以有效地對目標(biāo)參數(shù)進(jìn)行求解。該文所提出的算法不需要初始值先驗(yàn)條件,仿真實(shí)驗(yàn)表明了所提算法的有效性。
-
關(guān)鍵詞:
- 無源定位 /
- 到達(dá)時(shí)間差 /
- 到達(dá)頻率差 /
- 半定松弛 /
- 克拉美羅下界
Abstract:In the passive location of moving target, the closed-form solution can reach Cramér-Rao Lower Bound (CRLB) under the low noise level, but these algorithms often can not adapt to the large measurement noise condition. For this problem, this paper proposes a passive positioning algorithm based on the Semi-Definite Relaxation (SDR) using Time Difference Of Arrival (TDOA) and Frequency Difference Of Arrival (FDOA). Firstly, this method constructs the pseudo-linear equation of the typical closed-form solution. Secondly, the idea of Stochastic Robust Least Squares (SRLS) and the nonlinear relationship between the target parameters and the additional variables are used to transform the localization problem into the least squares problem with quadratic equality. Using Semi-Definite Programming (SDP) technique, constrained least squares problem is then converted into the SDP problem, which is finally solved by the optimization toolbox. The proposed method does not require an initial priori information and simulations show the effectiveness of the proposed method.
-
表 1 觀測站的位置與速度
序號(hào) 位置(m) 速度(m/s) 1 300 100 150 30 –20 20 2 400 150 100 –30 10 20 3 300 500 200 10 –20 10 4 350 200 100 10 20 30 5 –100 –100 –100 –20 20 20 下載: 導(dǎo)出CSV
表 2 不同算法平均CPU運(yùn)行時(shí)間(s)
下載: 導(dǎo)出CSV
-
王鼎, 胡濤. 無源定位技術(shù)-二次等式約束最小二乘估計(jì)理論與方法[M]. 北京: 電子工業(yè)出版社, 2018: 3–9.WANG Ding and HU Tao. Least-Squares Estimation Theory and Method in Passive Location with Quadratic Equality Constraints[M]. Beijing: Publishing House of Electronics Industry, 2018: 3–9. 朱國輝, 馮大政, 聶衛(wèi)科. 傳感器位置誤差情況下基于多維標(biāo)度分析的時(shí)差定位算法[J]. 電子學(xué)報(bào), 2016, 44(1): 21–26. doi: 10.3969/j.issn.0372-2112.2016.01.004ZHU Guohui, FENG Dazheng, and NIE Weike. Multidimensional scaling based TDOA localization algorithm with sensor location errors[J]. Acta Electronica Sinica, 2016, 44(1): 21–26. doi: 10.3969/j.issn.0372-2112.2016.01.004 WANG Yue and HO K C. An asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 6524–6535. doi: 10.1109/twc.2015.2456057 趙勇勝, 趙擁軍, 趙闖. 基于雙基地距離的多站多外輻射源無源定位算法[J]. 電子學(xué)報(bào), 2018, 46(12): 2840–2847. doi: 10.3969/j.issn.0372-2112.2018.12.004ZHAO Yongsheng, ZHAO Yongjun, and ZHAO Chuang. Multi-transmitter multi-receiver passive location using bistatic range measurements[J]. Acta Electronica Sinica, 2018, 46(12): 2840–2847. doi: 10.3969/j.issn.0372-2112.2018.12.004 周龍健, 羅景青, 孔輝. 基于虛擬時(shí)差的運(yùn)動(dòng)陣列空間無源定位算法[J]. 電子與信息學(xué)報(bào), 2017, 39(7): 1759–1763. doi: 10.11999/JEIT160860ZHOU Longjian, LUO Jingqing, and KONG Hui. A passive location algorithm based on the virtual TDOAs of moving array[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1759–1763. doi: 10.11999/JEIT160860 TAHAT A, KADDOUM G, YOUSEFI S, et al. A look at the recent wireless positioning techniques with a focus on algorithms for moving receivers[J]. IEEE Access, 2017, 4: 6652–6680. doi: 10.1109/ACCESS.2016.2606486 INDELMAN V, GURFIL P, RIVLIN E, et al. Real-time vision-aided localization and navigation based on three -view geometry[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2239–2259. doi: 10.1109/TAES.2012.6237590 DEMPSTER A G and CETIN E. Interference localization for satellite navigation systems[J]. Proceedings of the IEEE, 2016, 104(6): 1318–1326. doi: 10.1109/jproc.2016.2530814 FOY W H. Position-location solutions by taylor-series estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1976, AES-12(2): 187–194. doi: 10.1109/TAES.1976.308294 HO K C and XU Wenwei. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2453–2463. doi: 10.1109/tsp.2004.831921 KAY S M. Fundamentals of Statistical Signal Processing Volume I: Estimation Theory[M]. Upper Saddle River: Prentice Hall, 1993: 23–45. HO K C, LU Xiaoning, and KOVAVISARUCH L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution[J]. IEEE Transactions on Signal Processing, 2007, 55(2): 684–696. doi: 10.1109/tsp.2006.885744 SUM Ming and HO K C. An asymptotically efficient estimator for TDOA and FDOA positioning of multiple disjoint sources in the presence of sensor location uncertainties[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3434–3440. doi: 10.1109/TSP.2011.2131135 WEI Hewen, PENG Rong, WAN Qun, et al. Multidimensional scaling analysis for passive moving target localization with TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1677–1688. doi: 10.1109/TSP.2009.2037666 劉洋, 楊樂, 郭福成, 等. 基于定位誤差修正的運(yùn)動(dòng)目標(biāo)TDOA/FDOA無源定位方法[J]. 航空學(xué)報(bào), 2015, 36(5): 1617–1626. doi: 10.7527/S1000-6893.2015.0010LIU Yang, YANG Le, GUO Fucheng, et al. Moving targets TDOA/FDOA passive localization algorithm based on localization error refinement[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1617–1626. doi: 10.7527/S1000-6893.2015.0010 NOROOZI A, OVEIS A H, HOSSEINI S M R, et al. Improved algebraic solution for source localization from TDOA and FDOA measurements[J]. IEEE Wireless Communications Letters, 2018, 7(3): 352–355. doi: 10.1109/LWC.2017.2777995 周恭謙, 楊露菁, 劉忠. 改進(jìn)的非完全約束加權(quán)最小二乘TDOA/FDOA無源定位方法[J]. 系統(tǒng)工程與電子技術(shù), 2018, 40(8): 1686–1692. doi: 10.3969/j.issn.1001-506X.2018.08.03ZHOU Gongqian, YANG Luqing, and LIU Zhong. Improved incomplete constrained weighted least squares TDOA/FDOA passive location method[J]. Systems Engineering and Electronics, 2018, 40(8): 1686–1692. doi: 10.3969/j.issn.1001-506X.2018.08.03 WANG Gang, LI Youming, and ANSARI N. A semidefinite relaxation method for source localization using TDOA and FDOA measurements[J]. IEEE Transactions on Vehicular Technology, 2013, 62(2): 853–862. doi: 10.1109/TVT.2012.2225074 ZOU Yanbin, LIU Huaping, XIE Wei, et al. Semidefinite programming methods for alleviating sensor position error in TDOA localization[J]. IEEE Access, 2017, 5: 23111–23120. doi: 10.1109/ACCESS.2017.2752206 ZOU Yanbin, LIU Huaping, and WAN Qun. An iterative method for moving target localization using TDOA and FDOA Measurements[J]. IEEE Access, 2017, 6: 2746–2754. doi: 10.1109/ACCESS.2017.2785182 BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 152–160. GRANT M, BOYD S, and YE Y. CVX: MATLAB software for disciplined convex programming[EB/OL]. http://cvxr.com/cvx/, 2018. -