一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于霧線先驗(yàn)的時(shí)空關(guān)聯(lián)約束視頻去霧算法

姚婷婷 梁越 柳曉鳴 胡青

姚婷婷, 梁越, 柳曉鳴, 胡青. 基于霧線先驗(yàn)的時(shí)空關(guān)聯(lián)約束視頻去霧算法[J]. 電子與信息學(xué)報(bào), 2020, 42(11): 2796-2804. doi: 10.11999/JEIT190403
引用本文: 姚婷婷, 梁越, 柳曉鳴, 胡青. 基于霧線先驗(yàn)的時(shí)空關(guān)聯(lián)約束視頻去霧算法[J]. 電子與信息學(xué)報(bào), 2020, 42(11): 2796-2804. doi: 10.11999/JEIT190403
Tingting YAO, Yue LIANG, Xiaoming LIU, Qing HU. Video Dehazing Algorithm via Haze-line Prior with Spatiotemporal Correlation Constraint[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2796-2804. doi: 10.11999/JEIT190403
Citation: Tingting YAO, Yue LIANG, Xiaoming LIU, Qing HU. Video Dehazing Algorithm via Haze-line Prior with Spatiotemporal Correlation Constraint[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2796-2804. doi: 10.11999/JEIT190403

基于霧線先驗(yàn)的時(shí)空關(guān)聯(lián)約束視頻去霧算法

doi: 10.11999/JEIT190403 cstr: 32379.14.JEIT190403
基金項(xiàng)目: 中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(3132020208),國家自然科學(xué)基金(31700742)
詳細(xì)信息
    作者簡介:

    姚婷婷:女,1988年生,講師,研究方向?yàn)橛?jì)算機(jī)視覺與圖像處理等

    梁越:男,1996年生,碩士生,研究方向?yàn)殪F天視頻處理

    柳曉鳴:男,1959年生,教授,研究方向?yàn)楹I辖煌娮有畔⑻幚?、雷達(dá)信號處理等

    胡青:男,1978年生,教授,研究方向?yàn)楹J滦畔鬏敗⒆詣幼R別系統(tǒng)等

    通訊作者:

    姚婷婷 ytt1030@dlmu.edu.cn

  • 1) SfM算法程序可以從網(wǎng)址: http://ccwu.me/vsfm/獲得
  • 中圖分類號: TN911.73, TP391

Video Dehazing Algorithm via Haze-line Prior with Spatiotemporal Correlation Constraint

Funds: The Fundamental Research Funds for the Central Universities (3132020208), The National Natural Science Foundation of China (31700742)
  • 摘要: 現(xiàn)有視頻去霧算法由于缺少對視頻結(jié)構(gòu)關(guān)聯(lián)約束和幀間一致性分析,容易導(dǎo)致連續(xù)幀去霧結(jié)果在顏色和亮度上存在突變,同時(shí)去霧后的前景目標(biāo)邊緣區(qū)域也容易出現(xiàn)退化現(xiàn)象。針對上述問題,該文提出一種基于霧線先驗(yàn)的時(shí)空關(guān)聯(lián)約束視頻去霧算法,通過引入每幀圖像在空間鄰域中具有的結(jié)構(gòu)關(guān)聯(lián)性和時(shí)間鄰域中具有的連續(xù)一致性,提高視頻去霧算法的求解準(zhǔn)確性和魯棒性。算法首先使用暗通道先驗(yàn)估計(jì)每幀圖像的大氣光向量,并結(jié)合霧線先驗(yàn)求取初始透射率圖。然后引入加權(quán)最小二乘邊緣保持平滑濾波器對初始透射率圖進(jìn)行空間平滑,消除奇異點(diǎn)和噪聲對估計(jì)結(jié)果的影響。進(jìn)一步利用相機(jī)參數(shù)刻畫連續(xù)幀間透射率圖的時(shí)序變化規(guī)律,對獨(dú)立求取的每幀透射率圖進(jìn)行時(shí)序關(guān)聯(lián)修正。最后根據(jù)霧圖模型獲得最終的視頻去霧結(jié)果。定性和定量的對比實(shí)驗(yàn)結(jié)果表明,該算法下視頻去霧結(jié)果的幀間過渡更加自然,同時(shí)對每一幀圖像的色彩還原更加準(zhǔn)確,圖像邊緣的細(xì)節(jié)信息顯示也更加豐富。
  • 圖  1  霧線示意圖

    圖  2  本文算法總體框圖

    圖  3  同一幀各階段透射率圖對比

    圖  4  視頻Ship和Beach連續(xù)幀下去霧結(jié)果對比

    圖  5  單幀圖像去霧結(jié)果對比

    表  1  各算法在不同評價(jià)指標(biāo)下的性能對比

    視頻集算法VCMSSIMHCC信息熵UQI
    Bali文獻(xiàn)[16]算法47.7398±4.35020.6614±0.0459–0.3173±0.04856.8571±0.16410.5923±0.0425
    文獻(xiàn)[17]算法30.1254±5.62770.5526±0.0215–0.2960±0.03267.3794±0.07920.4669±0.0225
    文獻(xiàn)[19]算法41.6247±4.94480.8693±0.0041–0.0813±0.05817.5121±0.04470.8061±0.0086
    文獻(xiàn)[20]算法37.4402±4.02380.6221±0.0214–0.1968±0.10616.5753±0.14450.5889±0.0335
    文獻(xiàn)[21]算法49.7812±4.47820.7001±0.1116–0.0312±0.06397.5413±0.05720.8819±0.0101
    本文算法51.3852±6.32230.6679±0.0249–0.2532±0.02517.9253±0.13220.8938±0.0285
    Blenheim文獻(xiàn)[16]算法35.5897±2.20010.8686±0.01290.0667±0.01656.5025±0.19670.7960±0.0258
    文獻(xiàn)[17]算法37.5815±1.62240.8260±0.03660.4688±0.09457.0697±0.09030.7661±0.0373
    文獻(xiàn)[19]算法26.0153±1.92590.9123±0.00350.4406±0.02317.0390±0.07160.8332±0.0209
    文獻(xiàn)[20]算法18.2786±2.27690.8215±0.02620.2759±0.03396.4305±0.06020.7721±0.0449
    文獻(xiàn)[21]算法64.9899±1.78270.6632±0.00940.0377±0.01356.2305±0.16370.7239±0.0108
    本文算法40.0056±0.91160.9764±0.00220.7940±0.09697.4379±0.04340.9549±0.0131
    Playground文獻(xiàn)[16]算法50.2886±6.46190.8954±0.0129–0.0276±0.02495.9694±0.45800.9021±0.0123
    文獻(xiàn)[17]算法31.9030±8.12110.7788±0.05750.0115±0.11777.4964±0.09110.7529±0.0703
    文獻(xiàn)[19]算法43.6243±3.56590.9205±0.00860.1664±0.05197.2406±0.10600.8967±0.0142
    文獻(xiàn)[20]算法35.5237±3.24260.7807±0.0182–0.1450±0.05956.9652±0.09300.7728±0.0309
    文獻(xiàn)[21]算法51.8038±5.38900.6917±0.0258–0.0457±0.04176.8567±0.20890.8213±0.0204
    本文算法54.4761±10.97460.9546±0.02300.0587±0.05067.1156±0.17210.9379±0.0421
    Stele文獻(xiàn)[16]算法30.7638±15.73690.3649±0.02880.4263±0.12346.8163±0.08280.7349±0.0476
    文獻(xiàn)[17]算法44.2502±3.14280.7392±0.01990.0577±0.04437.1132±0.08280.7665±0.0296
    文獻(xiàn)[19]算法51.0145±5.45310.8529±0.01090.3319±0.08466.5512±0.14770.7671±0.0174
    文獻(xiàn)[20]算法40.8246±4.81870.8214±0.01570.2711±0.10346.2814±0.12420.7805±0.0233
    文獻(xiàn)[21]算法75.7723±3.88980.5875±0.01660.0227±0.04197.3425±0.10650.7881±0.0252
    本文算法29.9452±3.07790.9045±0.02220.4791±0.11637.9275±0.09330.8580±0.0361
    Motocycle文獻(xiàn)[16]算法35.9520±15.95570.6854±0.0389–0.0101±0.02546.9864±0.05070.5594±0.0292
    文獻(xiàn)[17]算法49.8669±5.50660.7500±0.03240.3960±0.08827.4345±0.05830.8401±0.0319
    文獻(xiàn)[19]算法33.4659±11.35330.8693±0.00470.2797±0.04757.0304±0.06460.8535±0.0114
    文獻(xiàn)[20]算法25.9303±7.02410.3705±0.0650–0.3172±0.31565.7929±0.38120.1670±0.0547
    文獻(xiàn)[21]算法69.1006±4.91470.5231±0.01460.0111±0.02997.6674±0.10620.7442±0.0219
    本文算法52.0758±8.09320.7720±0.02810.5653±0.08967.2598±0.09920.8955±0.0261
    Ship文獻(xiàn)[16]算法38.8112±11.48190.7648±0.11410.0505±0.18177.5924±0.13690.6952±0.1243
    文獻(xiàn)[17]算法33.9529±3.17270.8063±0.01620.0147±0.05517.5878±0.07910.7969±0.0267
    文獻(xiàn)[19]算法35.1544±10.51720.8396±0.01040.0313±0.04497.5395±0.04310.7682±0.0134
    文獻(xiàn)[20]算法33.8128±3.75080.5602±0.0496–0.3243±0.02126.8355±0.15860.3912±0.0669
    文獻(xiàn)[21]算法53.0535±4.76260.6343±0.0167–0.1062±0.00996.8996±0.10230.7783±0.0097
    本文算法46.0955±3.61690.8365±0.01250.2137±0.08637.8230±0.01310.7985±0.0206
    Beach文獻(xiàn)[16]算法16.2818±4.70950.9786±0.00960.7025±0.08647.3837±0.04570.9702±0.0133
    文獻(xiàn)[17]算法38.2337±5.43350.7396±0.0096–0.2957±0.03717.4769±0.08440.6582±0.0159
    文獻(xiàn)[19]算法9.4401±2.48710.8823±0.00500.0043±0.04547.4627±0.02370.8078±0.0062
    文獻(xiàn)[20]算法22.7816±3.32440.4762±0.4821–0.3919±0.02076.4422±0.20080.2868±0.0615
    文獻(xiàn)[21]算法32.7816±8.85430.7221±0.02070.0181±0.00827.4134±0.08510.8845±0.0031
    本文算法28.2158±5.86220.9802±0.01540.8117±0.08817.8108±0.02400.9415±0.0197
    下載: 導(dǎo)出CSV

    表  2  各算法計(jì)算效率對比

    算法文獻(xiàn)[16]算法文獻(xiàn)[17]算法文獻(xiàn)[19]算法文獻(xiàn)[20]算法文獻(xiàn)[21]算法本文算法
    時(shí)間(s)182.26541.09850.10761.82500.26011.0502
    下載: 導(dǎo)出CSV
  • XU Yong, WEN Jie, FEI Lunke, et al. Review of video and image defogging algorithms and related studies on image restoration and enhancement[J]. IEEE Access, 2015, 4: 165–188. doi: 10.1109/ACCESS.2015.2511558
    YU Tianhe, MENG Xue, ZHU Ming, et al. An improved multi-scale retinex fog and haze image enhancement method[C]. 2016 International Conference on Information System and Artificial Intelligence, Hong Kong, China, 2016: 557–560. doi: 10.1109/ISAI.2016.0124.
    LI Yaning, WANG Junping, GAO Kang, et al. Fast morphological filtering haze removal method from a single image[J]. Journal of Computational Information Systems, 2015, 11(16): 5799–5806. doi: 10.12733/jcis14861
    QIAO Tong, REN Jinchang, WANG Zheng, et al. Effective denoising and classification of hyperspectral images using curvelet transform and singular spectrum analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 119–133. doi: 10.1109/TGRS.2016.2598065
    黃果, 許黎, 陳慶利, 等. 非局部多尺度分?jǐn)?shù)階微分圖像增強(qiáng)算法研究[J]. 電子與信息學(xué)報(bào), 2019, 41(12): 2972–2979. doi: 10.11999/JEIT190032

    HUANG Guo, XU Li, CHEN Qingli, et al. Research on non-local multi-scale fractional differential image enhancement algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2972–2979. doi: 10.11999/JEIT190032
    HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. doi: 10.1109/TPAMI.2010.168
    楊愛萍, 王南, 龐彥偉, 等. 人工光源條件下夜間霧天圖像建模及去霧[J]. 電子與信息學(xué)報(bào), 2018, 40(6): 1330–1337. doi: 10.11999/JEIT170704

    YANG Aiping, WANG Nan, PANG Yanwei, et al. Nighttime haze removal based on new imaging model with artificial light sources[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1330–1337. doi: 10.11999/JEIT170704
    江巨浪, 孫偉, 王振東, 等. 基于透射率權(quán)值因子的霧天圖像融合增強(qiáng)算法[J]. 電子與信息學(xué)報(bào), 2018, 40(10): 2388–2394. doi: 10.11999/JEIT171032

    JIANG Julang, SUN Wei, WANG Zhendong, et al. Integrated enhancement algorithm for hazy image using transmittance as weighting factor[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2388–2394. doi: 10.11999/JEIT171032
    MA Xiao, SHAO Limin, XU Guanlei, et al. Intelligent defogging method based on clustering and dark channel prior[C]. 2018 IEEE 3rd International Conference on Image, Vision and Computing, Chongqing, China, 2018: 149–156. doi: 10.1109/ICIVC.2018.8492842.
    楊燕, 王志偉. 基于均值不等關(guān)系優(yōu)化的自適應(yīng)圖像去霧算法[J]. 電子與信息學(xué)報(bào), 2020, 42(3): 755–763. doi: 10.11999/JEIT190368

    YANG Yan and WANG Zhiwei. Adaptive image dehazing algorithm based on mean unequal relation optimization[J]. Journal of Electronics &Information Technology, 2020, 42(3): 755–763. doi: 10.11999/JEIT190368
    JOHN J and WILSCY M. Enhancement of weather degraded video sequences using wavelet fusion[C]. The 7th IEEE International Conference on Cybernetic Intelligent Systems, London, England, 2008: 1–6. doi: 10.1109/UKRICIS.2008.4798926.
    YOON I, KIM S, KIM D, et al. Adaptive defogging with color correction in the HSV color space for consumer surveillance system[J]. IEEE Transactions on Consumer Electronics, 2012, 58(1): 111–116. doi: 10.1109/TCE.2012.6170062
    郭璠, 蔡自興, 謝斌. 基于霧氣理論的視頻去霧算法[J]. 電子學(xué)報(bào), 2011, 39(9): 2019–2025.

    GUO Fan, CAI Zixing, and XIE Bin. Video defogging algorithm based on fog theory[J]. Acta Electronica Sinica, 2011, 39(9): 2019–2025.
    劉海波, 楊杰, 吳正平, 等. 改進(jìn)的基于霧氣理論的視頻去霧[J]. 光學(xué)精密工程, 2016, 24(7): 1789–1798. doi: 10.3788/OPE.20162407.1789

    LIU Haibo, YANG Jie, WU Zhengping, et al. Improved video defogging based on fog theory[J]. Optics and Precision Engineering, 2016, 24(7): 1789–1798. doi: 10.3788/OPE.20162407.1789
    馬忠麗, 文杰, 郝亮亮. 海面艦船場景的視頻圖像海霧去除算法[J]. 系統(tǒng)工程與電子技術(shù), 2014, 36(9): 1860–1867. doi: 10.3969/j.issn.1001-506X.2014.09.31

    MA Zhongli, WEN Jie, and HAO Liangliang. Video image defogging algorithm for surface ship scenes[J]. Systems Engineering and Electronics, 2014, 36(9): 1860–1867. doi: 10.3969/j.issn.1001-506X.2014.09.31
    LI Zhuwen, TAN Ping, TAN R T, et al. Simultaneous video defogging and stereo reconstruction[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 4988–4997. doi: 10.1109/CVPR.2015.7299133.
    BERMAN D, TREIBITZ T, AVIDAN S, et al. Non-local image dehazing[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 1674–1682. doi: 10.1109/CVPR.2016.185.
    KATO T, SHIMIZU I, and PAJDLA T. Selecting image pairs for SfM by introducing jaccard similarity[C]. The 15th IAPR International Conference on Machine Vision Applications (MVA), Nagoya, Japan, 2017: 25–29. doi: 10.23919/MVA.2017.7986764.
    CAI Bolun, XU Xiangmin, and TAO Dacheng. Real-time video dehazing based on spatio-temporal MRF[C]. The 17th Pacific-Rim Conference on Multimedia on Advances in Multimedia Information Processing, Cham, 2016: 315–325. doi: 10.1007/978-3-319-48896-7_31.
    ZHAO Dong, XU Long, YAN Yihua, et al. Multi-scale optimal fusion model for single image dehazing[J]. Signal Processing: Image Communication, 2019, 74: 253–265. doi: 10.1016/j.image.2019.02.004
    YU Teng, SONG Kang, MIAO Pu, et al. Nighttime single image dehazing via pixel-wise alpha blending[J]. IEEE Access, 2019, 7: 114619–114630. doi: 10.1109/ACCESS.2019.2936049
  • 加載中
圖(5) / 表(2)
計(jì)量
  • 文章訪問數(shù):  2051
  • HTML全文瀏覽量:  904
  • PDF下載量:  114
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-06-05
  • 修回日期:  2020-06-22
  • 網(wǎng)絡(luò)出版日期:  2020-07-17
  • 刊出日期:  2020-11-16

目錄

    /

    返回文章
    返回