一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于電離層色散的短波信道多徑特性分析

吳永宏 王程林 任淵博 周福厚

吳永宏, 王程林, 任淵博, 周福厚. 基于電離層色散的短波信道多徑特性分析[J]. 電子與信息學(xué)報, 2020, 42(8): 2006-2012. doi: 10.11999/JEIT190384
引用本文: 吳永宏, 王程林, 任淵博, 周福厚. 基于電離層色散的短波信道多徑特性分析[J]. 電子與信息學(xué)報, 2020, 42(8): 2006-2012. doi: 10.11999/JEIT190384
Yonghong WU, Chenglin WANG, Yuanbo REN, Fuhou ZHOU. High Frequency Channel Multipath Analysis Based on Ionosphere Dispersion[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2006-2012. doi: 10.11999/JEIT190384
Citation: Yonghong WU, Chenglin WANG, Yuanbo REN, Fuhou ZHOU. High Frequency Channel Multipath Analysis Based on Ionosphere Dispersion[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2006-2012. doi: 10.11999/JEIT190384

基于電離層色散的短波信道多徑特性分析

doi: 10.11999/JEIT190384 cstr: 32379.14.JEIT190384
基金項目: 山東省支持青島海洋科學(xué)與技術(shù)試點國家實驗室重大科技專項(2018SDKJ0210)
詳細(xì)信息
    作者簡介:

    吳永宏:男,1974年生,高級工程師,主要研究方向為短波通信、網(wǎng)絡(luò)規(guī)劃和信號處理等

    王程林:男,1985年生,工程師,主要研究方向為短波通信及嵌入式軟件開發(fā)

    任淵博:女,1980年生,工程師,主要研究方向為短波通信及嵌入式軟件開發(fā)

    周福厚:男,1972年生,工程師,主要研究方向為無線通信及信息系統(tǒng)總體設(shè)計

    通訊作者:

    吳永宏 wyh7426@sina.com

  • 中圖分類號: TN92

High Frequency Channel Multipath Analysis Based on Ionosphere Dispersion

Funds: The Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (2018SDKJ0210)
  • 摘要:

    短波鏈路不同傳播模式的多徑時延通常為0.5~2.0 ms,該文研究同一傳播模式的多徑時延,在考慮地磁場影響的情況下,將電離層短波傳播的折射指數(shù)和射線追蹤結(jié)合起來,給出了數(shù)值迭代算法,實現(xiàn)了用數(shù)值方法來描述電離層色散引起的多徑時延,并進(jìn)行了數(shù)值仿真,得出短波寬帶通信的模擬帶寬應(yīng)為48 kHz。

  • 圖  1  北美大陸天波鏈路(8 km)實測數(shù)據(jù)得到的散射函數(shù)

    表  1  青島-許昌鏈路多徑時延實測結(jié)果

    序號1234567891011121314
    多徑時延(μs)55113082281931315322301040
    下載: 導(dǎo)出CSV

    表  2  北美大陸天波鏈路(80 km)路徑時延和多徑時延仿真結(jié)果

    頻率(MHz)3.53.84.14.44.75.0
    尋常波時延(ms)1.2281.3121.8751.9162.0002.144
    非尋常波時延(ms)1.5441.5401.6241.8682.1802.308
    多徑時延(μs)31622825148180164
    下載: 導(dǎo)出CSV

    表  3  青島-許昌鏈路路徑時延和多徑時延仿真結(jié)果

    頻率(MHz)6.57.07.58.08.59.0
    尋常波時延(ms)2.7602.9122.9282.9963.1683.480
    非尋常波時延(ms)2.5163.0523.0002.9282.9603.164
    多徑時延(μs)2441407268208316
    下載: 導(dǎo)出CSV

    表  4  青島-北京鏈路5點時段路徑時延和多徑時延

    頻率(MHz)4.04.55.05.56.0
    尋常波時延(ms)2.2922.2802.3722.5602.764
    非尋常波時延(ms)2.2642.3042.3522.4082.488
    多徑時延(μs)282420152276
    下載: 導(dǎo)出CSV

    表  5  青島-北京鏈路13點時段路徑時延和多徑時延

    頻率(MHz)6.06.57.07.58.08.59.0
    尋常波時延(ms)2.5722.4642.4082.4842.5202.6282.944
    非尋常波時延(ms)2.7762.5122.4522.4402.3362.4842.644
    多徑時延(μs)204484440184144300
    下載: 導(dǎo)出CSV

    表  6  青島-北京鏈路21點時段路徑時延和多徑時延

    頻率(MHz)4.55.05.56.06.57.07.58.0
    尋常波時延(ms)2.3082.3042.3562.4082.4482.7642.6882.900
    非尋常波時延(ms)2.2762.3082.3402.3202.3962.4722.5522.720
    多徑時延(μs)32416885229213618
    下載: 導(dǎo)出CSV

    表  7  青島-上海鏈路5點時段路徑時延和多徑時延

    頻率(MHz)4.04.55.05.56.0
    尋常波時延(ms)2.4402.4962.7042.6242.940
    非尋常波時延(ms)2.4082.4122.4122.4602.504
    多徑時延(μs)3284292164436
    下載: 導(dǎo)出CSV

    表  8  青島-上海鏈路13點時段路徑時延和多徑時延

    頻率(MHz)6.06.57.07.58.08.59.09.510.010.5
    尋常波時延(ms)2.3882.6002.5362.5162.5482.5802.6762.8122.7162.792
    非尋常波時延(ms)2.4632.5322.4202.4642.4522.5402.5282.5042.6082.768
    多徑時延(μs)856811652964014830810824
    下載: 導(dǎo)出CSV

    表  9  青島-上海鏈路21點時段路徑時延和多徑時延

    頻率(MHz)5.05.56.06.57.07.58.0
    尋常波時延(ms)2.5362.5682.6162.6842.5722.9123.160
    非尋常波時延(ms)2.4722.4922.5282.5722.6082.5722.788
    多徑時延(μs)64768811236340372
    下載: 導(dǎo)出CSV

    表  10  青島-重慶鏈路5點時段路徑時延和多徑時延

    頻率(MHz)6.06.57.07.58.08.59.09.510.0
    尋常波時延(ms)5.3045.2965.2925.3085.3245.3205.2925.3725.472
    非尋常波時延(ms)5.2965.2245.2765.2885.2925.3045.2405.3645.320
    多徑時延(μs)87216203216528152
    下載: 導(dǎo)出CSV

    表  11  青島-重慶鏈路13點時段路徑時延和多徑時延

    頻率(MHz)11.512.012.513.013.514.014.5
    尋常波時延(ms)5.3285.2285.3165.4045.3725.3605.272
    非尋常波時延(ms)5.4965.1965.1445.2565.3885.3645.340
    多徑時延(μs)1683217214816468
    頻率(MHz)15.015.516.016.517.017.518.0
    尋常波時延(ms)5.3325.3285.3325.3325.3685.3805.420
    非尋常波時延(ms)5.3525.2805.3245.3485.3605.3565.348
    多徑時延(μs)204881682472
    下載: 導(dǎo)出CSV

    表  12  青島-重慶鏈路21點時段路徑時延和多徑時延

    頻率(MHz)7.07.58.08.59.09.510.010.5
    尋常波時延(ms)5.2265.2355.2415.3045.2595.2595.2805.292
    非尋常波時延(ms)5.2435.2385.2535.2535.2445.2745.2845.295
    多徑時延(μs)1731251151543
    頻率(MHz)11.011.512.012.513.013.514.014.5
    尋常波時延(ms)5.2485.3085.2605.2845.3405.3565.4285.388
    非尋常波時延(ms)5.2565.2925.3005.3085.3045.3125.3525.340
    多徑時延(μs)816402436447648
    下載: 導(dǎo)出CSV

    表  13  青島-北京鏈路多徑時延的期望和標(biāo)準(zhǔn)差

    時段(點)51321
    期望(μs)100.0137.779.8
    標(biāo)準(zhǔn)差(μs)101.099.490.1
    下載: 導(dǎo)出CSV

    表  14  青島-上海鏈路多徑時延的期望和標(biāo)準(zhǔn)差

    時段(點)51321
    期望(μs)201.6104.5155.4
    標(biāo)準(zhǔn)差(μs)146.476.6128.9
    下載: 導(dǎo)出CSV

    表  15  青島-重慶鏈路多徑時延的期望和標(biāo)準(zhǔn)差

    時段(點)51321
    期望(μs)41.857.425.8
    標(biāo)準(zhǔn)差(μs)43.958.720.5
    下載: 導(dǎo)出CSV
  • WANG Jinlong, LI Shaoqian, and WEI Jibo. Wideband, intelligent and integrated HF communications[J]. China Communications, 2018, 15(9): iii–v. doi: 10.1109/CC.2018.8456446.
    LOBOVA E O and KANDAUROV N A. Experimental results of dispersion distortion compensation of wideband signals with a device based on a digital filter bank[C]. 2019 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 2019. doi: 10.1109/SOSG.2019.8706758.
    LOBOV E M and SHUBIN D N. A narrow-band interference compensation device based on a digital filter bank for broadband low-energy HF radio lines[C]. 2019 Systems of signals generating and processing in the field of on board communication, Moscow, Russia, 2019. doi: 10.1109/SOSG.2019.8706791.
    VOGLER L E and HOFFMEYER J A. A new approach to HF channel modeling and simulation, Part I: Deterministic model[R]. NTIA Report 88–240, 1988.
    VOGLER L E and HOFFMEYER J A. A new approach to HF channel modeling and simulation, Part Ⅱ: Stochastic model[R]. NTIA Report 90–255, 1990.
    VOGLER L E and HOFFMEYER J A. A new approach to HF channel modeling and simulation, Part Ⅲ: Transfer function[R]. NTIA Report 93–284, 1992.
    VOGLER L E and HOFFMEYER J A. A model for wideband HF propagation channels[J]. Radio Science, 1993, 28(6): 1131–1142. doi: 10.1029/93RS01607
    MIL-STD-188-110D Interoperability and performance standards for data modems[S]. 2017: 142–145.
    NELSON R, JORGENSON M, and JOHNON R W. Extension of wideband HF capabilities[EB/OL]. https://www.hfindustry.com/account/my-account. 2014.5.
    DAVIS K. Ionospheric Radio[M]. London: P. Peregrinus on behalf of the Institution of Electrical Engineers, 1990: 18–20.
    索玉成. 電離層短波射線追蹤[J]. 空間科學(xué)學(xué)報, 1993, 13(4): 306–312.

    SUO Yucheng. Short wave ray tracing in the ionosphere[J]. Chinese Journal of Space Science, 1993, 13(4): 306–312.
    柳文, 焦培南, 王世凱, 等. 電離層短波三維射線追蹤及其應(yīng)用研究[J]. 電波科學(xué)學(xué)報, 2008, 23(1): 41–48, 67. doi: 10.3969/j.issn.1005-0388.2008.01.007

    LIU Wen, JIAO Peinan, WANG Shikai, et al. Short wave ray tracing in the ionosphere and its application[J]. Chinese Journal of Radio Science, 2008, 23(1): 41–48, 67. doi: 10.3969/j.issn.1005-0388.2008.01.007
    THAYAPARAN T, DUPONT D, IBRAHIM Y, et al. High-frequency ionospheric monitoring system for over-the-horizon radar in Canada[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6372–6384. doi: 10.1109/TGRS.2019.2905757
    THAYAPARAN T, IBRAHIM Y, POLAK J, et al. High-frequency over-the-horizon radar in Canada[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11): 1700–1704. doi: 10.1109/LGRS.2018.2856185
    KLIMENKO M V, CHIRIK N V, KOTOVA D S, et al. Development of improved ionospheric empirical model and software for HF ray tracing[C]. 2018 2nd URSI Atlantic Radio Science Meeting, Meloneras, Spain, 2018. doi: 10.23919/URSI-AT-RASC.2018.8471348.
    JONES R M and STEPHENSON J J. A versatile three-dimensional ray tracing computer program for radio waves in the ionosphere[R]. OT Report 75–76, 1975.
    攸陽, 錢志剛, 李吉寧, 等. 短波時差定位中電離層參數(shù)對定位影響仿真[J]. 電波科學(xué)學(xué)報, 2017, 32(4): 462–466. doi: 10.13443/J.CJORS.2017033002

    YOU Yang, QIAN Zhigang, LI Jining, et al. Simulation on the effect of ionospheric parameters on TDOA location in short wave[J]. Chinese Journal of Radio Science, 2017, 32(4): 462–466. doi: 10.13443/J.CJORS.2017033002
    HUANG Xiaoguo. Extended beam approximation for high-frequency wave propagation[J]. IEEE Access, 2018, 6: 37214–37224. doi: 10.1109/ACCESS.2018.2849595
    SAITO S, YAMAMOTO M, and MARUYAMA T. Arrival angle and travel time measurements of HF transequatorial propagation for plasma bubble monitoring[J]. Radio Science, 2018, 53(11): 1304–1315. doi: 10.1029/2017RS006518
    TAYGUR M M, EIBERT T F, and SUKHAREVSKY I O. A bidirectional ray-tracing method for antenna coupling evaluation based on the reciprocity theorem[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 6654–6664. doi: 10.1109/TAP.2018.2876680
    YAN Zhaowen, ZHANG Lanlan, RAHMAN T, et al. Prediction of the HF ionospheric channel stability based on the modified ITS model[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3321–3333. doi: 10.1109/TAP.2013.2249571
  • 加載中
圖(1) / 表(15)
計量
  • 文章訪問數(shù):  2606
  • HTML全文瀏覽量:  1246
  • PDF下載量:  116
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-05-29
  • 修回日期:  2020-03-02
  • 網(wǎng)絡(luò)出版日期:  2020-03-31
  • 刊出日期:  2020-08-18

目錄

    /

    返回文章
    返回