基于電離層色散的短波信道多徑特性分析
doi: 10.11999/JEIT190384 cstr: 32379.14.JEIT190384
-
1.
中國電波傳播研究所 青島 266107
-
2.
青島海洋科學(xué)與技術(shù)試點國家實驗室 青島 266235
-
3.
山東航天電子技術(shù)研究所 煙臺 264003
High Frequency Channel Multipath Analysis Based on Ionosphere Dispersion
-
1.
China Research Institute of Radio Wave Propagation, Qingdao 266071, China
-
2.
Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
-
3.
Shandong Institute of Space Electronic Technology, Yantai 264003, China
-
摘要:
短波鏈路不同傳播模式的多徑時延通常為0.5~2.0 ms,該文研究同一傳播模式的多徑時延,在考慮地磁場影響的情況下,將電離層短波傳播的折射指數(shù)和射線追蹤結(jié)合起來,給出了數(shù)值迭代算法,實現(xiàn)了用數(shù)值方法來描述電離層色散引起的多徑時延,并進(jìn)行了數(shù)值仿真,得出短波寬帶通信的模擬帶寬應(yīng)為48 kHz。
Abstract:The multipath delay for different propagation mode is 0.5~2.0 ms, and the multipath delay for the same propagation mode is analyzed. Taking into account the earth magnetic field effects, the refractive index of High frequency propagation in ionosphere is combined with ray tracing, and then a new numerical iteration algorithm is given. The multipath delay caused by ionosphere dispersion is analyzed by numerical method, and the simulation is realized. Thus the analogue bandwidth of wideband communication for high frequency should be 48 kHz.
-
Key words:
- Ray tracing /
- Ionosphere dispersion /
- Multipath delay /
- Refractive index /
- Ordinary wave /
- Extraordinary wave
-
表 2 北美大陸天波鏈路(80 km)路徑時延和多徑時延仿真結(jié)果
頻率(MHz) 3.5 3.8 4.1 4.4 4.7 5.0 尋常波時延(ms) 1.228 1.312 1.875 1.916 2.000 2.144 非尋常波時延(ms) 1.544 1.540 1.624 1.868 2.180 2.308 多徑時延(μs) 316 228 251 48 180 164 下載: 導(dǎo)出CSV
表 3 青島-許昌鏈路路徑時延和多徑時延仿真結(jié)果
頻率(MHz) 6.5 7.0 7.5 8.0 8.5 9.0 尋常波時延(ms) 2.760 2.912 2.928 2.996 3.168 3.480 非尋常波時延(ms) 2.516 3.052 3.000 2.928 2.960 3.164 多徑時延(μs) 244 140 72 68 208 316 下載: 導(dǎo)出CSV
表 4 青島-北京鏈路5點時段路徑時延和多徑時延
頻率(MHz) 4.0 4.5 5.0 5.5 6.0 尋常波時延(ms) 2.292 2.280 2.372 2.560 2.764 非尋常波時延(ms) 2.264 2.304 2.352 2.408 2.488 多徑時延(μs) 28 24 20 152 276 下載: 導(dǎo)出CSV
表 5 青島-北京鏈路13點時段路徑時延和多徑時延
頻率(MHz) 6.0 6.5 7.0 7.5 8.0 8.5 9.0 尋常波時延(ms) 2.572 2.464 2.408 2.484 2.520 2.628 2.944 非尋常波時延(ms) 2.776 2.512 2.452 2.440 2.336 2.484 2.644 多徑時延(μs) 204 48 44 40 184 144 300 下載: 導(dǎo)出CSV
表 6 青島-北京鏈路21點時段路徑時延和多徑時延
頻率(MHz) 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 尋常波時延(ms) 2.308 2.304 2.356 2.408 2.448 2.764 2.688 2.900 非尋常波時延(ms) 2.276 2.308 2.340 2.320 2.396 2.472 2.552 2.720 多徑時延(μs) 32 4 16 88 52 292 136 18 下載: 導(dǎo)出CSV
表 7 青島-上海鏈路5點時段路徑時延和多徑時延
頻率(MHz) 4.0 4.5 5.0 5.5 6.0 尋常波時延(ms) 2.440 2.496 2.704 2.624 2.940 非尋常波時延(ms) 2.408 2.412 2.412 2.460 2.504 多徑時延(μs) 32 84 292 164 436 下載: 導(dǎo)出CSV
表 8 青島-上海鏈路13點時段路徑時延和多徑時延
頻率(MHz) 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 尋常波時延(ms) 2.388 2.600 2.536 2.516 2.548 2.580 2.676 2.812 2.716 2.792 非尋常波時延(ms) 2.463 2.532 2.420 2.464 2.452 2.540 2.528 2.504 2.608 2.768 多徑時延(μs) 85 68 116 52 96 40 148 308 108 24 下載: 導(dǎo)出CSV
表 9 青島-上海鏈路21點時段路徑時延和多徑時延
頻率(MHz) 5.0 5.5 6.0 6.5 7.0 7.5 8.0 尋常波時延(ms) 2.536 2.568 2.616 2.684 2.572 2.912 3.160 非尋常波時延(ms) 2.472 2.492 2.528 2.572 2.608 2.572 2.788 多徑時延(μs) 64 76 88 112 36 340 372 下載: 導(dǎo)出CSV
表 10 青島-重慶鏈路5點時段路徑時延和多徑時延
頻率(MHz) 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 尋常波時延(ms) 5.304 5.296 5.292 5.308 5.324 5.320 5.292 5.372 5.472 非尋常波時延(ms) 5.296 5.224 5.276 5.288 5.292 5.304 5.240 5.364 5.320 多徑時延(μs) 8 72 16 20 32 16 52 8 152 下載: 導(dǎo)出CSV
表 11 青島-重慶鏈路13點時段路徑時延和多徑時延
頻率(MHz) 11.5 12.0 12.5 13.0 13.5 14.0 14.5 尋常波時延(ms) 5.328 5.228 5.316 5.404 5.372 5.360 5.272 非尋常波時延(ms) 5.496 5.196 5.144 5.256 5.388 5.364 5.340 多徑時延(μs) 168 32 172 148 16 4 68 頻率(MHz) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 尋常波時延(ms) 5.332 5.328 5.332 5.332 5.368 5.380 5.420 非尋常波時延(ms) 5.352 5.280 5.324 5.348 5.360 5.356 5.348 多徑時延(μs) 20 48 8 16 8 24 72 下載: 導(dǎo)出CSV
表 12 青島-重慶鏈路21點時段路徑時延和多徑時延
頻率(MHz) 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 尋常波時延(ms) 5.226 5.235 5.241 5.304 5.259 5.259 5.280 5.292 非尋常波時延(ms) 5.243 5.238 5.253 5.253 5.244 5.274 5.284 5.295 多徑時延(μs) 17 3 12 51 15 15 4 3 頻率(MHz) 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 尋常波時延(ms) 5.248 5.308 5.260 5.284 5.340 5.356 5.428 5.388 非尋常波時延(ms) 5.256 5.292 5.300 5.308 5.304 5.312 5.352 5.340 多徑時延(μs) 8 16 40 24 36 44 76 48 下載: 導(dǎo)出CSV
表 13 青島-北京鏈路多徑時延的期望和標(biāo)準(zhǔn)差
時段(點) 5 13 21 期望(μs) 100.0 137.7 79.8 標(biāo)準(zhǔn)差(μs) 101.0 99.4 90.1 下載: 導(dǎo)出CSV
表 14 青島-上海鏈路多徑時延的期望和標(biāo)準(zhǔn)差
時段(點) 5 13 21 期望(μs) 201.6 104.5 155.4 標(biāo)準(zhǔn)差(μs) 146.4 76.6 128.9 下載: 導(dǎo)出CSV
表 15 青島-重慶鏈路多徑時延的期望和標(biāo)準(zhǔn)差
時段(點) 5 13 21 期望(μs) 41.8 57.4 25.8 標(biāo)準(zhǔn)差(μs) 43.9 58.7 20.5 下載: 導(dǎo)出CSV
-
WANG Jinlong, LI Shaoqian, and WEI Jibo. Wideband, intelligent and integrated HF communications[J]. China Communications, 2018, 15(9): iii–v. doi: 10.1109/CC.2018.8456446. LOBOVA E O and KANDAUROV N A. Experimental results of dispersion distortion compensation of wideband signals with a device based on a digital filter bank[C]. 2019 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 2019. doi: 10.1109/SOSG.2019.8706758. LOBOV E M and SHUBIN D N. A narrow-band interference compensation device based on a digital filter bank for broadband low-energy HF radio lines[C]. 2019 Systems of signals generating and processing in the field of on board communication, Moscow, Russia, 2019. doi: 10.1109/SOSG.2019.8706791. VOGLER L E and HOFFMEYER J A. A new approach to HF channel modeling and simulation, Part I: Deterministic model[R]. NTIA Report 88–240, 1988. VOGLER L E and HOFFMEYER J A. A new approach to HF channel modeling and simulation, Part Ⅱ: Stochastic model[R]. NTIA Report 90–255, 1990. VOGLER L E and HOFFMEYER J A. A new approach to HF channel modeling and simulation, Part Ⅲ: Transfer function[R]. NTIA Report 93–284, 1992. VOGLER L E and HOFFMEYER J A. A model for wideband HF propagation channels[J]. Radio Science, 1993, 28(6): 1131–1142. doi: 10.1029/93RS01607 MIL-STD-188-110D Interoperability and performance standards for data modems[S]. 2017: 142–145. NELSON R, JORGENSON M, and JOHNON R W. Extension of wideband HF capabilities[EB/OL]. https://www.hfindustry.com/account/my-account. 2014.5. DAVIS K. Ionospheric Radio[M]. London: P. Peregrinus on behalf of the Institution of Electrical Engineers, 1990: 18–20. 索玉成. 電離層短波射線追蹤[J]. 空間科學(xué)學(xué)報, 1993, 13(4): 306–312.SUO Yucheng. Short wave ray tracing in the ionosphere[J]. Chinese Journal of Space Science, 1993, 13(4): 306–312. 柳文, 焦培南, 王世凱, 等. 電離層短波三維射線追蹤及其應(yīng)用研究[J]. 電波科學(xué)學(xué)報, 2008, 23(1): 41–48, 67. doi: 10.3969/j.issn.1005-0388.2008.01.007LIU Wen, JIAO Peinan, WANG Shikai, et al. Short wave ray tracing in the ionosphere and its application[J]. Chinese Journal of Radio Science, 2008, 23(1): 41–48, 67. doi: 10.3969/j.issn.1005-0388.2008.01.007 THAYAPARAN T, DUPONT D, IBRAHIM Y, et al. High-frequency ionospheric monitoring system for over-the-horizon radar in Canada[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6372–6384. doi: 10.1109/TGRS.2019.2905757 THAYAPARAN T, IBRAHIM Y, POLAK J, et al. High-frequency over-the-horizon radar in Canada[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11): 1700–1704. doi: 10.1109/LGRS.2018.2856185 KLIMENKO M V, CHIRIK N V, KOTOVA D S, et al. Development of improved ionospheric empirical model and software for HF ray tracing[C]. 2018 2nd URSI Atlantic Radio Science Meeting, Meloneras, Spain, 2018. doi: 10.23919/URSI-AT-RASC.2018.8471348. JONES R M and STEPHENSON J J. A versatile three-dimensional ray tracing computer program for radio waves in the ionosphere[R]. OT Report 75–76, 1975. 攸陽, 錢志剛, 李吉寧, 等. 短波時差定位中電離層參數(shù)對定位影響仿真[J]. 電波科學(xué)學(xué)報, 2017, 32(4): 462–466. doi: 10.13443/J.CJORS.2017033002YOU Yang, QIAN Zhigang, LI Jining, et al. Simulation on the effect of ionospheric parameters on TDOA location in short wave[J]. Chinese Journal of Radio Science, 2017, 32(4): 462–466. doi: 10.13443/J.CJORS.2017033002 HUANG Xiaoguo. Extended beam approximation for high-frequency wave propagation[J]. IEEE Access, 2018, 6: 37214–37224. doi: 10.1109/ACCESS.2018.2849595 SAITO S, YAMAMOTO M, and MARUYAMA T. Arrival angle and travel time measurements of HF transequatorial propagation for plasma bubble monitoring[J]. Radio Science, 2018, 53(11): 1304–1315. doi: 10.1029/2017RS006518 TAYGUR M M, EIBERT T F, and SUKHAREVSKY I O. A bidirectional ray-tracing method for antenna coupling evaluation based on the reciprocity theorem[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 6654–6664. doi: 10.1109/TAP.2018.2876680 YAN Zhaowen, ZHANG Lanlan, RAHMAN T, et al. Prediction of the HF ionospheric channel stability based on the modified ITS model[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3321–3333. doi: 10.1109/TAP.2013.2249571 -