社會屬性感知的邊緣計算任務(wù)調(diào)度策略
doi: 10.11999/JEIT190301 cstr: 32379.14.JEIT190301
-
1.
重慶郵電大學(xué)通信與信息工程學(xué)院 重慶 400065
-
2.
重慶高校市級光通信與網(wǎng)絡(luò)重點實驗室 重慶 400065
-
3.
泛在感知與互聯(lián)重慶市重點實驗室 重慶 400065
Social Attribute Aware Task Scheduling Strategy in Edge Computing
-
1.
School of Telecommunication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Chongqing Key Laboratory of Optical Communication and Network, Chongqing 400065, China
-
3.
Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing 400065, China
-
摘要:
邊緣計算服務(wù)器的負(fù)載不均衡將嚴(yán)重影響服務(wù)能力,該文提出一種適用于邊緣計算場景的任務(wù)調(diào)度策略(RQ-AIP)。首先,根據(jù)服務(wù)器的負(fù)載分布情況衡量整個網(wǎng)絡(luò)的負(fù)載均衡度,結(jié)合強化學(xué)習(xí)方法為任務(wù)匹配合適的邊緣服務(wù)器,以滿足傳感器節(jié)點任務(wù)的資源差異化需求;進(jìn)而,構(gòu)造任務(wù)時延和終端發(fā)射功率的映射關(guān)系來滿足物理域的約束,結(jié)合終端用戶社會屬性,為任務(wù)不斷地選擇合適的中繼終端,通過終端輔助調(diào)度的方式實現(xiàn)網(wǎng)絡(luò)的負(fù)載均衡。仿真結(jié)果表明,所提出的策略與其他負(fù)載均衡策略相比能有效地緩解邊緣服務(wù)器之間的負(fù)載和核心網(wǎng)的流量,降低任務(wù)處理時延。
-
關(guān)鍵詞:
- 計算機網(wǎng)絡(luò) /
- 邊緣計算 /
- 社會屬性 /
- 負(fù)載均衡
Abstract:Unbalanced load on the edge computing server will seriously affect service capabilities, a task scheduling strategy Reinforced Q-learning-Automatic Intent Picking (RQ-AIP) for edge computing scenarios is proposed. Firstly, the load balance of the entire network is measured based on the load distribution of the server. By combining the reinforcement learning method, the appropriate edge server is matched for the task to meet the resource differentiation needs of sensor node tasks. Then, a mapping relationship between task delay and terminal transmit power is constructed to satisfy the constraints of the physical domain. Combining the social attributes of terminal, the appropriate relay terminal is continuously selected for the task to achieve the load balancing of network by terminal-assisted scheduling. Simulation results show that compared with other load balancing strategies, the proposed strategy can effectively alleviate the load between the edge servers and the traffic of the core network, reduce task processing latency.
-
Key words:
- Computer network /
- Edge computing /
- Social attribute /
- Load balancing
-
表 1 仿真參數(shù)設(shè)置
參數(shù)設(shè)定 參數(shù)數(shù)值 任務(wù)到達(dá)率(個/s) [0, 4] 任務(wù)所需內(nèi)存(GB) [1, 10] 任務(wù)所需CPU周期(MHz) 50 任務(wù)時延(s) [200, 1500] 邊緣服務(wù)器CPU頻率(GHz) 3 無線信道帶寬(MHz) 5 邊緣服務(wù)器數(shù)量(個) 5 學(xué)習(xí)因子 0.5 終端發(fā)射功率(W) [0.1, 2] 噪聲功率(dBm/Hz) –170 下載: 導(dǎo)出CSV
-
KUMAR K, LIU Jibang, LU Y H, et al. A survey of computation offloading for mobile systems[J]. Mobile Networks and Applications, 2013, 18(1): 129–140. doi: 10.1007/s11036-012-0368-0 ZENG Deze, GU Lin, GUO Song, et al. Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system[J]. IEEE Transactions on Computers, 2016, 65(12): 3702–3712. doi: 10.1109/TC.2016.2536019 MAO Yuyi, ZHANG Jun, and LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3590–3605. doi: 10.1109/JSAC.2016.2611964 CHEN Xu, JIAO Lei, LI Wenzhong, et al. Efficient multi-user computation offloading for mobile-edge cloud computing[J]. IEEE/ACM Transactions on Networking, 2016, 24(5): 2795–2808. doi: 10.1109/TNET.2015.2487344 MACH P and BECVAR Z. Mobile edge computing: A survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628–1656. doi: 10.1109/COMST.2017.2682318 SAHNI Y, CAO Jiannong, and LEI Yang. Data-aware task allocation for achieving low latency in collaborative edge computing[J]. IEEE Internet of Things Journal, 2019, 6(2): 3512–3524. doi: 10.1109/JIOT.2018.2886757 LI Tianze, WU Muqing, ZHAO Min, et al. An overhead-optimizing task scheduling strategy for ad-hoc based mobile edge computing[J]. IEEE Access, 2017, 5: 5609–5622. doi: 10.1109/ACCESS.2017.2678102 SCH?FER D, EDINGER J, ECKRICH J, et al. Hybrid task scheduling for mobile devices in edge and cloud environments[C]. 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, Athens, Greece, 2018: 669–674. doi: 10.1109/PERCOMW.2018.8480201. THAM C K and CHATTOPADHYAY R. A load balancing scheme for sensing and analytics on a mobile edge computing network[C]. The 18th IEEE International Symposium on A World of Wireless, Mobile and Multimedia Networks, Macau, China, 2017: 1–9. doi: 10.1109/WoWMoM.2017.7974307. CHEN Lixing, ZHOU Sheng, and XU Jie. Computation peer offloading for energy-constrained mobile edge computing in small-cell networks[J]. IEEE/ACM Transactions on Networking, 2018, 26(4): 1619–1632. doi: 10.1109/TNET.2018.2841758 YOUNES H, BOUATTANE O, YOUSSFI M, et al. New load balancing framework based on mobile AGENT and ant-colony optimization technique[C]. 2017 Intelligent Systems and Computer Vision, Fez, Morocco, 2017: 1–6. MASOOD A, MUNIR E U, RAFIQUE M M, et al. HETS: Heterogeneous edge and task scheduling algorithm for heterogeneous computing systems[C]. The 17th IEEE International Conference on High Performance Computing and Communications, New York, USA, 2015: 1865–1870. doi: 10.1109/HPCC-CSS-ICESS.2015.295. TIAN Rui, JIAO Zhenzhen, BIAN Guiyun, et al. A social-based data forwarding mechanism for V2V communication in VANETs[C]. The 10th International Conference on Communications and Networking in China, Shanghai, China, 2015: 595–599. doi: 10.1109/CHINACOM.2015.7498007. Cisco visual networking index: Global mobile data traffic forecast update, 2015–2020[EB/OL]. https://www.cisco.com/c/dam/m/en_in/innovation/enterprise/assets/mobile-white-paper-c11-520862.pdf, 2016. ZHAO Pengtao, TIAN Hui, QIN Cheng, et al. Energy-saving offloading by jointly allocating radio and computational resources for mobile edge computing[J]. IEEE Access, 2017, 5: 11255–11268. doi: 10.1109/ACCESS.2017.2710056 PAN Hui, CROWCROFT J, and YONEKI E. BUBBLE Rap: Social-based forwarding in delay-tolerant networks[J]. IEEE Transactions on Mobile Computing, 2011, 10(11): 1576–1589. doi: 10.1109/TMC.2010.246 -