基于流量工程的軟件定義網(wǎng)絡(luò)控制資源優(yōu)化機制
doi: 10.11999/JEIT190276 cstr: 32379.14.JEIT190276
-
1.
國家數(shù)字交換系統(tǒng)工程技術(shù)研究中心 ??鄭州 ??450002
-
2.
中國人民解放軍第91445部隊 大連 116043
Control Resource Optimization Mechanism of SDN Based on Traffic Engineering
-
1.
National Digital Switching System Engineering & Technology Research Center, Zhengzhou 450002, China
-
2.
Unit 91445 of PLA, Dalian 116043, China
-
摘要:
針對軟件定義網(wǎng)絡(luò)(SDN)分布式控制平面中由于網(wǎng)絡(luò)分域管理所引發(fā)的控制擴張問題,該文提出了一種基于流量工程的SDN控制資源優(yōu)化(TERO)機制。首先基于數(shù)據(jù)流的路徑特征對流請求的控制資源消耗進行分析,指出通過調(diào)整控制器和交換機的關(guān)聯(lián)關(guān)系可以降低控制資源消耗。然后將控制器關(guān)聯(lián)過程分為兩個階段:先設(shè)計了最小集合覆蓋算法來快速求解大規(guī)模網(wǎng)絡(luò)中控制器關(guān)聯(lián)問題;在此基礎(chǔ)上,引入聯(lián)合博弈策略來優(yōu)化控制器和交換機的關(guān)聯(lián)關(guān)系以減少控制資源消耗和控制流量開銷。仿真結(jié)果表明,與現(xiàn)有的控制器和交換機就近關(guān)聯(lián)機制相比,該文機制能在保證較低控制流量開銷的前提下,節(jié)省約28%的控制資源消耗。
-
關(guān)鍵詞:
- 軟件定義網(wǎng)絡(luò) /
- 資源優(yōu)化 /
- 控制器關(guān)聯(lián) /
- 分布式控制平面
Abstract:In Software-Defined Networking (SDN) with distributed control plane, network expansion problems arise due to network domain management. To address this issue, a Traffic Engineering-based control Resource Optimization (TERO) mechanism of SDN is proposed. It analyzes the control resource consumption of flow requests processing with different path characteristics, and points out that the control resource consumption can be reduced by changing the association relationship between controllers and switches. The controller association mechanism is divided into two phases: firstly, a minimum set cover algorithm is designed to solve the controller association problem efficiently in large-scale network. Then, a coalitional game strategy is introduced to optimize the controller association relationship to reduce both control resource consumption and control traffic overhead. The simulation results demonstrate that while keeping control traffic overhead low, mechanism which in this paper can reduce control resource consumption by about 28% in comparison with the controller proximity mechanism.
-
表 1 最小集合覆蓋算法執(zhí)行過程
算法1 最小集合覆蓋算法(Minimum Set Coverage) 輸入: SDN網(wǎng)絡(luò)拓撲鄰接矩陣${\text{G}} = [{a_{ij}}]$;網(wǎng)絡(luò)中流處理請求矩陣${\text{F}} = [{f_{ij}}]$;控制器所能關(guān)聯(lián)的備選集合:${C_i} = \{ {S_1},{S_2}, ·\!·\!· ,{S_i}\} $;控制器的
容量及冗余因子:${\alpha _m}$, $\beta $輸出:控制器-交換機之間的映射關(guān)系:${\text{X} } = [{x_{ij} }]$ (1) 初始化:控制器-交換機關(guān)聯(lián)關(guān)系SC={·};已關(guān)聯(lián)的交換機set_switches={·}; (2) 統(tǒng)計網(wǎng)絡(luò)中端到端流量分布Flow_pair=Flow_sort(F); (3) while I in Flow_pair:遍歷網(wǎng)絡(luò)中流量 (4) Path_switch= Dijkstra(G, i);計算端到端流量的路徑 (5) while Path_switch: 循環(huán)4個完備策略 (6) if Path_switch $ \subseteq $${C_i}$:若滿足完備策略1, SC[${C_i}$]={Path_switch };流經(jīng)過的所有交換機關(guān)聯(lián)到${C_i}$ (7) if ${S_i}$$ \in $Path_switch AND ${S_i} \in $${C_j}$滿足完備策略2, ${S_i} \to {C_j}$; ${S_i}$關(guān)聯(lián)到${C_j}$ (8) if 存在${C_i} \subseteq {C_j}$:滿足完備策略3,則$ \cup {S_i} \to {C_j}$;交換機${S_i}$優(yōu)先關(guān)聯(lián)到${C_j}$ (9) if Sn(${S_i}$)$ \subseteq $Sn(${S_j}$):滿足完備策略4${S_i} \to \cup {\rm{ }}{C_j}$;交換機${S_i}$優(yōu)先處理 (10) else 如果上述4個完備策略都不能滿足:實行貪婪算法switch = max(Path_switch & ${C_i}$);尋找關(guān)聯(lián)交換機較多的控制器SC[${C_i}$]=
{switch};將相應(yīng)交換機關(guān)聯(lián)到控制器${C_i}$上end if; end while; (11) end while; (12) SC={${C_j} = \{ {S_j},{S_{j + 1}}, ·\!·\!· {\rm{,}}{S_n}\} $;輸出控制器-交換機映射關(guān)系 下載: 導(dǎo)出CSV
表 2 聯(lián)合博弈策略執(zhí)行過程
算法2 聯(lián)合博弈策略Coalitional Game 輸入:算法1輸出的控制器-交換機之間的關(guān)聯(lián)關(guān)系${\text{X}} = [{x_{ij} }]$ 輸出: 控制器-交換機之間的關(guān)聯(lián)關(guān)系$\text{X}' = [{x'_{ij} }]$ (1) 初始化$\text{X} = [{x_{ij} }]$, ${\alpha _m}$, $\beta $ (2) repeat (3) for each ${s_i}$ in $F$:尋找可能存在的交換機遷移 (4) Initial migration pair ${s_i}:{\rm{ }}{c_m} \to {C_n}$;找到滿足兩個條
件的交換機遷移對end for (5) for each $ {c_m}$:對于每一個控制器 (6) ${L_{ij}}$=${f_{ij}}{d_{kl}}{x_{ik}}{x_{jl}} + \delta {c_{ik}}$;計算每條數(shù)據(jù)流的資源消耗 (7) if ${s_i}:{\rm{ }}{c_m} \to {C_n}$ and ${\theta _n} \le \alpha \times \beta $;保證控制器不過載,
尋找可能的交換機遷移(8) ${L'_{ij}}$=${f_{ij}}{d_{kl}}{x'_{ik}}{x'_{jl}} + \delta {c'_{ik}}$;假設(shè)遷移,計算新的資源
消耗(9) if ${L'_{ij}} \le {L_{ij}}$: 若交換機遷移前后,資源消耗減少了,
則接受遷移(10) ${s_i} \to {c_j}$;實施交換機遷移${L_{ij}} = {L'_{ij}}$;更新的資源
消耗(11) end if; end for; (12) 直到系統(tǒng)沒有任何交換機要求遷移,則算法收斂 下載: 導(dǎo)出CSV
表 3 實驗拓撲數(shù)據(jù)
網(wǎng)絡(luò)拓撲 節(jié)點數(shù) 鏈路數(shù) 控制器數(shù) 距離閾值 ARNES 34 47 4 3 ChinaNet 42 66 5 4 Interllifiber 73 93 6 5 Interoute 110 149 7 6 下載: 導(dǎo)出CSV
-
ZHANG Yuan, CUI Lin, WANG Wei, et al. A survey on software defined networking with multiple controllers[J]. Journal of Network and Computer Applications, 2018, 103: 101–118. doi: 10.1016/j.jnca.2017.11.015 KARAKUS M and DURRESI A. A survey: Control plane scalability issues and approaches in Software-Defined Networking (SDN)[J]. Computer Networks, 2016, 112: 279–293. doi: 10.1016/j.comnet.2016.11.017 XU Yang, CELLO M, WANG I C, et al. Dynamic switch migration in distributed software-defined networks to achieve controller load balance[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(3): 515–529. doi: 10.1109/JSAC.2019.2894237 MUQADDAS A S, GIACCONE P, BIANCO A, et al. Inter-controller traffic to support consistency in ONOS clusters[J]. IEEE Transactions on Network and Service Management, 2017, 14(4): 1018–1031. doi: 10.1109/TNSM.2017.2723477 BENSON T, AKELLA A, and MALTZ D A. Network traffic characteristics of data centers in the wild[C]. The 10th ACM SIGCOMM Conference on Internet Measurement, Melbourne, Australia, 2010: 267–280. WANG Tao, LIU Fangming, GUO Jian, et al. Dynamic SDN controller assignment in data center networks: Stable matching with transfers[C]. The 35th Annual IEEE International Conference on Computer Communications, San Francisco, USA, 2016: 1–9. 胡濤, 張建輝, 鄔江, 等. SDN中基于分布式?jīng)Q策的控制器負載均衡機制[J]. 電子學(xué)報, 2018, 46(10): 2316–2324. doi: 10.3969/j.issn.0372-2112.2018.10.002 CUI Jie, LU Qianzhe, ZHONG Hong, et al. A load-balancing mechnism for distributed SDN control using response time[J]. Thansactions on Network and Service Management, 2018, 15(4): 1197–1206. doi: 10.1109/TNSM.2018.2876369 伊鵬, 劉邦舟, 王文博, 等. 一種考慮軟件定義網(wǎng)絡(luò)控制節(jié)點故障的控制器部署和交換機遷移方法[J]. 電子與信息學(xué)報, 2017, 39(8): 1972–1978. doi: 10.11999/JEIT161216YI Peng, LIU Bangzhou, WANG Wenbo, et al. Controller placement and switch immigration strategy for SDN controller failure[J]. Journal of Electronics &Information Technology, 2017, 39(8): 1972–1978. doi: 10.11999/JEIT161216 ZHOU Yang, ZHENG Kangfeng, NI Wei, et al. Elastic switch migration for control plane load balancing in SDN[J]. IEEE Access, 2018(6): 3909–3919. doi: 10.1109/ACCESS.2018.2795576 張少軍, 蘭巨龍, 江逸茗, 等. 流特征感知的軟件定義網(wǎng)絡(luò)控制器動態(tài)關(guān)聯(lián)機制[J]. 電子與信息學(xué)報, 2018, 40(9): 2050–2056. doi: 10.11999/JEIT171149ZHANG Shaojun, LAN Julong, JIANG Yiming, et al. Flow characteristics aware dynamic controller assignment in software-defined networking[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2050–2056. doi: 10.11999/JEIT171149 SALMAN O, ELHAJJ I H, KAYSSI A, et al. SDN controllers: A comparative study[C]. The 18th Mediterranean Electrotechnical Conference, Lemesos, Cyprus, 2016: 1–6. PAL C, VEENA S, RUSTAGI R P, et al. Implementation of simplified custom topology framework in Mininet[C]. 2014 Asia-Pacific Conference on Computer Aided System Engineering, South Kuta, Indonesia, 2014: 48–53. doi: 10.1109/APCASE.2014.6924470. KNIGHT S, NGUYEN H X, FALKNER N, et al. The internet topology zoo[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(9): 1765–1775. doi: 10.1109/jsac.2011.111002 LIAO Jianxin, SUN Haifeng, WANG Jingyu, et al. Density cluster based approach for controller placement problem in large-scale software defined networkings[J]. Computer Networks, 2017, 112: 24–35. doi: 10.1016/j.comnet.2016.10.014 YAO Guang, BI Jun, LI Yuliang, et al. On the capacitated controller placement problem in software defined networks[J]. IEEE Communications Letters, 2014, 18(8): 1339–1342. doi: 10.1109/LCOMM.2014.2332341 -