軍車隱秘編隊(duì)的無線紫外光通信最優(yōu)多跳中繼研究
doi: 10.11999/JEIT190172 cstr: 32379.14.JEIT190172
-
1.
西安理工大學(xué)自動(dòng)化與信息工程學(xué)院 西安 710048
-
2.
陜西省智能協(xié)同網(wǎng)絡(luò)軍民共建重點(diǎn)實(shí)驗(yàn)室 西安 710000
Research on Optimum Multi-hop Relay of Wireless Ultraviolet Communication in Military Vehicle Secret Formation
-
1.
Faculty of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China
-
2.
Shaanxi Civil-Military Integration Key Laboratory of Intelligence Collaborative Networks, Xi’an 710000, China
-
摘要: 無線紫外光通信成為強(qiáng)電磁干擾下的有效通信手段,滿足復(fù)雜戰(zhàn)場環(huán)境下車隊(duì)執(zhí)行戰(zhàn)略物資運(yùn)輸和彈車隊(duì)隱蔽行駛時(shí)車輛間保持可靠隱秘通信的需求。在行駛中每輛車自身作為其它車輛的中繼,通過多跳方式為非視線內(nèi)車輛之間建立穩(wěn)定可靠的通信鏈路。因此,基于紫外光單次散射模型,該文研究了最優(yōu)多跳中繼問題,理論分析了收發(fā)仰角與頻譜效率的關(guān)系,依據(jù)使頻譜效率最大化原則,得出最優(yōu)跳數(shù)近似表達(dá)式。仿真結(jié)果表明,不同距離移位范圍和不同收發(fā)仰角都對(duì)應(yīng)特定的最優(yōu)跳數(shù)值,與最優(yōu)能量計(jì)算方法相比,最大頻譜效率計(jì)算方法在小功率傳輸時(shí)有更好的傳輸能力,并且達(dá)到節(jié)約功率的需求。紫外光長距離通信時(shí),系統(tǒng)性能并不隨著協(xié)作中繼數(shù)的增加而提高,選取合適的中繼數(shù)及小發(fā)射仰角和大接收仰角的結(jié)構(gòu)配置,系統(tǒng)可獲得較高的傳輸能力。
-
關(guān)鍵詞:
- 無線紫外光通信 /
- 多跳中繼通信 /
- 最優(yōu)跳數(shù) /
- 頻譜效率
Abstract: Wireless ultraviolet communication becomes an effective means of communication under strong electromagnetic interference, which meets the need of reliable and secret communication between vehicles when the fleet performs strategic material transportation and the missile vehicle fleet of concealed driving vehicles in a complex battlefield environment. Each vehicle acts as a relay for other vehicles while driving, and establishes a stable and reliable communication link between non-line-of-sight vehicles through a multi-hop model. Therefore, based on the single-scattering model of ultraviolet, the optimal multi-hop relay problem is studied, and the relationship between the elevation angle of the transmitting and receiving and the spectral efficiency is theoretically analyzed. According to the principle of maximizing the spectral efficiency, the approximate expression of the optimum number of hops is obtained. The simulation results show that the optimum number of hops correspond to different distance shift range and elevation angles. Compared with the optimum energy calculation method, the proposed method has better transmission capability in low power transmission and achieves the requirement of power saving. In the long-distance ultraviolet communication, system performance does not increase with the number of cooperative relays. The system can obtain a higher transmission capacity by selecting a suitable number of relays and a small transmission elevation angle and a large receiving elevation angle. -
表 1 系統(tǒng)主要仿真參數(shù)
參數(shù) 數(shù)值 紫外波長 260 nm PMT探測效率 0.3 濾光片透過率 0.6 吸收系數(shù) 0.802×10–3 m–1 米氏散射系數(shù) 0.284×10–3 m–1 瑞利散射系數(shù) 0.266×10–3 m–1 普朗克常數(shù)h 6.6×10–34 下載: 導(dǎo)出CSV
-
WU Menglong, HAN Dahai, ZHANG Xiang, et al. Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems[J]. Optics Express, 2014, 22(5): 5422–5430. doi: 10.1364/OE.22.005422 XU Changming, ZHANG Hongming, and CHENG Julian. Effects of haze particles and fog droplets on NLOS ultraviolet communication channels[J]. Optics Express, 2015, 23(18): 23259–23269. doi: 10.1364/OE.23.023259 ZHAO Taifei, GAO Yingying, and ZHANG Ying. An area coverage algorithm for non-line-of-sight ultraviolet communication network[J]. Photonic Network Communications, 2016, 32(2): 269–280. doi: 10.1007/s11107-016-0622-7 YUAN Renzhi and MA Jianshe. Review of ultraviolet non-line-of-sight communication[J]. China Communications, 2016, 13(6): 63–75. doi: 10.1109/CC.2016.7513203 張曦文, 趙尚弘, 李勇軍, 等. 基于空分復(fù)用的多信道機(jī)間紫外光通信定向MAC協(xié)議[J]. 激光技術(shù), 2016, 40(3): 451–455. doi: 10.7510/jgjs.issn.1001-3806.2016.03.032ZHANG Xiwen, ZHAO Shanghong, LI Yongjun, et al. Multi-channel directional media access control protocol for airborne ultraviolet communication based on space division multiplexing[J]. Laser Technology, 2016, 40(3): 451–455. doi: 10.7510/jgjs.issn.1001-3806.2016.03.032 HE Qunfeng, XU Zhengyuan, and BRIAN S. Non-line-of-sight serial relayed link for optical wireless communications[C]. MILCOM 2010 Military Communications Conference, San Jose, USA, 2010: 1588–1593. doi: 10.1109/MILCOM.2010.5680180. VAVOULAS A, SANDALIDIS H G, and VAROUTAS D. Node isolation probability for serial ultraviolet UV-C multi-hop networks[J]. Journal of Optical Communications and Networking, 2011, 3(9): 750–757. doi: 10.1364/JOCN.3.000750 李濟(jì)波, 吳曉軍, 王紅星, 等. 紫外光非直視通信抗干擾中繼鏈路方法及其功率需求分析[J]. 激光與光電子學(xué)進(jìn)展, 2015, 52(3): 030601. doi: 10.3788/LOP52.030601LI Jibo, WU Xiaojun, WANG Hongxing, et al. Anti-interference relayed link method and power requirement analysis for ultraviolet non-line-of-sight communication[J]. Laser &Optoelectronics Progress, 2015, 52(3): 030601. doi: 10.3788/LOP52.030601 ARDAKANI M H, HEIDARPOUR A R, and UYSAL M. Performance analysis of relay-assisted NLOS ultraviolet communications over turbulence channels[J]. Journal of Optical Communications and Networking, 2017, 9(1): 109–118. doi: 10.1364/JOCN.9.000109 柯熙政, 陳錦妮. 紫外光無線傳感器網(wǎng)絡(luò)節(jié)能的研究與仿真[J]. 激光技術(shù), 2013, 37(2): 251–255. doi: 10.7510/jgjs.issn.1001-3806.2013.02.028KE Xizheng and CHEN Jinni. Research of energy-saving wireless sensor network based on UV light[J]. Laser Technology, 2013, 37(2): 251–255. doi: 10.7510/jgjs.issn.1001-3806.2013.02.028 何華, 柯熙政, 趙太飛. 紫外光非視距單次散射鏈路模型的研究[J]. 光學(xué)學(xué)報(bào), 2010, 30(11): 3148–3152. doi: 10.3788/AOS20103011.3148HE Hua, KE Xizheng, and ZHAO Taifei. Research of ultraviolet non-line-of-sight single scattering link model[J]. Acta Optica Sinica, 2010, 30(11): 3148–3152. doi: 10.3788/AOS20103011.3148 趙太飛, 金丹, 宋鵬. 無線紫外光非直視通信信道容量估算與分析[J]. 中國激光, 2015, 42(6): 0605001. doi: 10.3788/CJL201542.0605001ZHAO Taifei, JIN Dan, and SONG Peng. Channel capacity estimation and analysis of wireless ultraviolet non-line-of-sight communication[J]. Chinese Journal of Lasers, 2015, 42(6): 0605001. doi: 10.3788/CJL201542.0605001 CHEN Gang, XU Zhengyuan, DING Haipeng, et al. Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications[J]. Optics Express, 2009, 17(5): 3929–3940. doi: 10.1364/OE.17.003929 FENG Hao and CIMINI L J. On the optimum number of hops in a multi-hop linear network with randomly located nodes[C]. 2012 IEEE International Conference on Communications, Ottawa, Canada, 2012: 2329–2333. doi: 10.1109/ICC.2012.6363752. CHEN Deqiang, HAENGGI M, and LANEMAN J N. Distributed spectrum-efficient routing algorithms in wireless networks[C]. The 41st Annual Conference on Information Sciences and Systems, Baltimore, USA, 2007: 5297–5305. doi: 10.1109/CISS.2007.4298387. CORLESS R M, GONNET G H, HARE D E G, et al. On the lambert W function[J]. Advances in Computational Mathematics, 1996, 5(1): 329–359. doi: 10.1007/BF02124750 朱秉誠. 自由空間光通信中繼系統(tǒng)研究[D]. [博士學(xué)位論文], 東南大學(xué), 2015: 19–22.ZHU Bingcheng. Free-space optical communications with relays[D]. [Ph.D. dissertation], Southeast University, 2015: 19–22. 王智. 部隊(duì)車隊(duì)行駛的注意事項(xiàng)[J]. 汽車運(yùn)用, 2007(1): 34. doi: 10.3969/j.issn.1002-8374.2007.01.028WANG Zhi. Precautions for troop convoy driving[J]. Auto Application, 2007(1): 34. doi: 10.3969/j.issn.1002-8374.2007.01.028 -