雷達間歇輻射對測向交叉定位性能的影響分析
doi: 10.11999/JEIT190110 cstr: 32379.14.JEIT190110
-
1.
中國電子科技集團公司航空電子信息系統(tǒng)技術重點實驗室 成都 610036
-
2.
中國電子科技集團公司第十研究所 成都 610036
Analysis for Effect of Radar Intermittent Radiation on the Performance of Cross Location
-
1.
Key Laboratory of Avionic Information System Technology, China Electronics Technology Group Corporation, Chengdu 610036, China
-
2.
The 10th Research Institute of China Electronics Technology Group Corporation, Chengdu 610036, China
-
摘要:
針對雷達采取間歇輻射的射頻隱身管控措施,以雙站測向交叉定位為例,該文研究了輻射時間比與定位性能的影響關系。首先分析了雷達間歇輻射的管控方法,然后在載機做勻速直線運動的假設下,采用克拉美羅下界(CRLB)方法,建立了輻射時間比對定位精度的影響模型。最后給出了模型的求解步驟并進行了仿真驗證。仿真結果表明,不同輻射時間比對定位性能的影響不同,在初始距離為100 km,輻射時間比小于0.5時,定位收斂時間超過10 s,可以有效降低測向交叉定位的性能。
Abstract:For the radio frequency stealth control measure of radar intermittent radiation, the relationship between radiation time ratio and positioning performance is studied which takes cross location with two stations as an example. Firstly, the control method of radar intermittent radiation is analyzed. Then, under the assumption of uniform linear motion of the carrier aircraft, the influence model of radiation time ratio on positioning accuracy is established by using the Cramer-Rao Lower Bound (CRLB). Finally, the solution steps of the model are given and verified by simulation. The simulation results show that different radiation time ratios have different effects on the location performance. When the initial distance is 100 km and the radiation time ratio is less than 0.5, the location convergence time exceeds 10 s, which can effectively reduce the performance of cross location with two stations.
-
表 1 仿真參數(shù)
參數(shù) 取值 有效輻射功率 110 dBm 發(fā)射頻率 8 GHz 波束寬度 2.2°×2.2° 副瓣電平 –25 dB 初始距離 100 km,70 km 載機飛行速度 300 m/s 偵察飛機飛行速度 300 m/s 基線長度 30 km 測向精度 0.5° 導航精度 50 m 采樣周期 100 ms 下載: 導出CSV
表 2 不同輻射時間比對收斂時間的影響(s)
輻射時間比$\beta $ 初始距離100 km 初始距離70 km 1.00 2.1 0.9 0.90 2.2 1.0 0.80 3.3 1.5 0.75 3.8 1.6 0.66 7.4 2.8 0.50 12.2 6.2 0.33 19.0 10.9 0.25 25.3 14.5 0.20 31.6 18.1 0.10 46.5 27.3 下載: 導出CSV
表 3 不同輻射時間比及時隙重復周期下的收斂時間(s)
$\tau /T$(%) T(s) 0.5 1 2 3 4 100 3.2 3.2 3.2 3.2 3.2 80 4.1 4.1 4.1 3.9 4.2 50 6.8 7.1 6.5 6.6 5.4 40 10.1 9.3 8.6 7.2 8.8 30 20.5 29.2 24.5 15.8 13.0 20 51.5 50.1 48.3 40.8 44.7 下載: 導出CSV
-
PARIKH A, KAMALAPURKAR R, and DIXON W E. Target tracking in the presence of intermittent measurements via motion model learning[J]. IEEE Transactions on Robotics, 2018, 34(3): 805–819. doi: 10.1109/TRO.2018.2821169 YADAV R, DAHIYA P K, and MISHRA R. Comparative analysis of automotive radar sensor for collision detection and warning system[J]. International Journal of Information Technology, 2018(12): 1–6. doi: 10.1007/s41870-018-0167-3 吳巍, 柳毅, 王國宏, 等. 輻射限制下有源無源協(xié)同跟蹤技術[J]. 信息與控制, 2011, 40(3): 418–423. doi: 10.3724/SP.J.1219.2011.00418WU Wei, LIU Yi, WANG Guohong, et al. Active and passive synergy tracking technique with emission constraint[J]. Information and Control, 2011, 40(3): 418–423. doi: 10.3724/SP.J.1219.2011.00418 吳巍, 王國宏, 李世忠. 雷達間歇輔助下雷達紅外協(xié)同跟蹤技術[J]. 火力與指揮控制, 2012, 37(1): 155–158. doi: 10.3969/j.issn.1002-0640.2012.01.040WU Wei, WANG Guohong, and LI Shizhong. Research on radar and IRST synergistic tracking with radar intermittent assistant[J]. Fire Control &Command Control, 2012, 37(1): 155–158. doi: 10.3969/j.issn.1002-0640.2012.01.040 熊久良, 徐宏, 韓壯志, 等. 基于組網的火控雷達間歇式目標跟蹤技術研究[J]. 現(xiàn)代雷達, 2011, 33(8): 13–16. doi: 10.3969/j.issn.1004-7859.2011.08.004XIONG Jiuliang, XU Hong, HAN Zhuangzhi, et al. A study on intermittent target tracking technology in fire-control radar network[J]. Modern Radar, 2011, 33(8): 13–16. doi: 10.3969/j.issn.1004-7859.2011.08.004 ZHANG Zhenkai, ZHOU Jianjiang, WANG Fei, et al. Multiple-target tracking with adaptive sampling intervals for phased-array radar[J]. Journal of Systems Engineering and Electronics, 2011, 22(5): 760–766. doi: 10.3969/j.issn.1004-4132.2011.05.006 ZHANG Zhenkai, ZHU Jiehao, TIAN Yubo, et al. Novel sensor selection strategy for LPI based on an improved IMMPF tracking method[J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 1004–1010. doi: 10.1109/jsee.2014.00115 BENOUDNINE H, KECHE M, OUAMRI A, et al. New efficient schemes for adaptive selection of the update time in the IMMJPDAF[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 197–214. doi: 10.1109/taes.2012.6129630 劉學全, 李波, 萬開方, 等. 基于多傳感器協(xié)同的雷達猝發(fā)技術研究[J]. 中國民航大學學報, 2012, 30(6): 17–20. doi: 10.3969/j.issn.1674-5590.2012.06.005LIU Xuequan, LI Bo, WAN Kaifang, et al. Study on radar burst technology based on multi-sensor synergy[J]. Journal of Civil Aviation University of China, 2012, 30(6): 17–20. doi: 10.3969/j.issn.1674-5590.2012.06.005 ZHOU Biao, SUN Chao, AHN D, et al. A novel passive tracking scheme exploiting geometric and intercept theorems[J]. Sensors, 2018, 18(3): 895. doi: 10.3390/s18030895 張國凱, 何佳洲, 戴霄. 基于橢球模型的雷達/ESM聯(lián)合定位算法[J]. 指揮控制與仿真, 2013, 35(5): 30–33. doi: 10.3969/j.issn.1673-3819.2013.05.007ZHANG Guokai, HE Jiazhou, and DAI Xiao. Radar/ESM locating algorithm based on the ellipsoid model of globe[J]. Command Control &Simulation, 2013, 35(5): 30–33. doi: 10.3969/j.issn.1673-3819.2013.05.007 NARYKOV A S and YAROVOY A. Sensor selection algorithm for optimal management of the tracking capability in multisensor radar system[C]. 2013 European Microwave Conference, Nuremberg, Germany, 2013: 1811–1814. 吳衛(wèi)華, 江晶, 高嵐. 機載雷達輔助無源傳感器對雜波環(huán)境下機動目標跟蹤[J]. 控制與決策, 2015, 30(2): 277–282. doi: 10.13195/j.kzyjc.2013.1781WU Weihua, JIANG Jing, and GAO Lan. Tracking maneuvering target in clutter with passive sensor aided by airborne radar[J]. Control and Decision, 2015, 30(2): 277–282. doi: 10.13195/j.kzyjc.2013.1781 YANG Chao, ZHENG Jiangying, REN Xiaoqiang, et al. Multi-sensor Kalman filtering with intermittent measurements[J]. IEEE Transactions on Automatic Control, 2018, 63(3): 797–804. doi: 10.1109/TAC.2017.2734643 HUANG He and WANG Wenqin. FDA-OFDM for integrated navigation, sensing, and communication systems[J]. IEEE Aerospace and Electronic Systems Magazine, 2018, 33(5/6): 34–42. doi: 10.1109/MAES.2018.170109 汪晗, 成昂軒, 王坤, 等. 無線傳感器網絡分布式迭代定位誤差控制算法[J]. 電子與信息學報, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344WANG Han, CHENG Angxuan, WANG Kun, et al. Error control algorithm of distributed localization in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344 孫仲康, 周一宇, 何黎星. 單多基地有源無源定位技術[M]. 北京: 國防工業(yè)出版社, 1996: 291–294.SUN Zhongkang, ZHOU Yiyu, and HE Lixing. Active and Passive Location Technology by Single and Multiple Platforms[M]. Beijing: National Defense Industry Press, 1996: 291–294. 張保群. 輻射時序對單站無源跟蹤性能的影響[J]. 電訊技術, 2015, 55(7): 746–752. doi: 10.3969/j.issn.1001-893x.2015.07.007ZHANG Baoqun. Effect of radiation time sequence on passive tracking with single observation platform[J]. Telecommunication Engineering, 2015, 55(7): 746–752. doi: 10.3969/j.issn.1001-893x.2015.07.007 -