基于渦輪式氣體流量傳感器的用力呼氣容量計算方法
doi: 10.11999/JEIT190051 cstr: 32379.14.JEIT190051
-
1.
中國科學院電子學研究所傳感技術國家重點實驗室 ??北京 ??100190
-
2.
中國科學院大學 北京 100049
Calculation of Forced Vital Capacity Based on Turbine Air Flow Sensor
-
1.
State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
-
2.
University of Chinese Academy of Sciences, Beijing 100049, China
-
摘要: 渦輪式氣體流量傳感器在用力肺功能測試中用于記錄人體呼氣信號,由于旋轉慣性,對于相同用力呼氣容量(FVC)值,測量結果因呼出氣體流量而異,且差異值通常不可接受。針對該問題,該文通過在傳統(tǒng)穩(wěn)態(tài)渦輪流量計算模型的基礎上引入速度懲罰項,構建一種FVC速度懲罰模型,與此同時,提出使用過幅降采樣渦輪旋轉周數算法,二者結合,提高了FVC測試結果的可接受性。利用國際通用的標準3 L定標桶,模擬真實用力肺功能測試過程,對算法的有效性進行驗證。實驗結果表明:所提方法能夠有效降低前述差異,在一定程度上滿足美國胸科協會(ATS)和歐洲呼吸學會(ERS)所提出的用力肺功能測試可接受標準和準確度要求。Abstract: Currently, the turbine air flow sensors are widely used to record the human exhalation signals in spirometry, but test results vary due to different expiratory flow for the same Forced Vital Capacity(FVC) measurements, and the differences are usually not in an acceptable range. To address this issue, a FVC velocity penalty model is proposed by introducing speed penalty items to the traditional mathematical model of turbine. Moreover, an over-amplitude drop sampling approach is used to calculate the rotations of the turbine due to the needs for the velocity penalty model to be able to accurately obtain the number of turbine rotations. The performance of the proposed approach is evaluated by using a syringe dispenser of 3L capacity, and results demonstrate that it can reduce the differences and meet the acceptable and accuracy criteria of the American Thoracic Society(ATS) and the European Respiratory Society(ERS) to some extent.
-
表 1 10次隨機氣體推進實驗對渦輪旋轉周數測量值與真實值對比
實驗(次) 1 2 3 4 5 6 7 8 9 10 真實值(周) 256 150 178 358 321 89 205 316 56 124 測量值(周) 253 148 172 354 316 87 204 310 56 122 下載: 導出CSV
-
VAN DER HEIJDEN M, LUCAS P J F, LIJNSE B, et al. An autonomous mobile system for the management of COPD[J]. Journal of Biomedical Informatics, 2013, 46(3): 458–469. doi: 10.1016/j.jbi.2013.03.003 POLVERINO F and CELLI B. The challenge of controlling the COPD epidemic: Unmet needs[J]. The American Journal of Medicine, 2018, 131(9 Suppl 1): 1–6. WANG Chenshuo, CHEN Xianxiang, ZHAO Rongjian, et al. Predicting Forced Vital Capacity (FVC) using Support Vector Regression (SVR)[J]. Physiological Measurement, 2019, 40(2): 025010. doi: 10.1088/1361-6579/ab031c World Health Organization 2018. Chronic Obstructive Pulmonary Disease (COPD)[EB/OL]. https://www.who.int/respiratory/copd/en/, 2018. SHARAN R V, ABEYRATNE U R, SWARNKAR V R, et al. Predicting spirometry readings using cough sound features and regression[J]. Physiological Measurement, 2018, 39(9): 095001. doi: 10.1088/1361-6579/aad948 ZHONG Nanshan, WANG Chen, YAO Wanzhen, et al. Prevalence of chronic obstructive pulmonary disease in china: A large, population-based survey[J]. American Journal of Respiratory and Critical Care Medicine, 2007, 176(8): 753–760. doi: 10.1164/rccm.200612-1749OC JOHNSON J D and THEURER W M. A stepwise approach to the interpretation of pulmonary function tests[J]. American Family Physician, 2014, 89(5): 359–366. MILLER M R, HANKINSON J, BRUSASCO V, et al. Standardisation of spirometry[J]. European Respiratory Journal, 2005, 26(2): 319–338. doi: 10.1183/09031936.05.00034805 WAN E S, FORTIS S, REGAN E A, et al. Longitudinal phenotypes and mortality in preserved ratio impaired spirometry in the COPDgene study[J]. American Journal of Respiratory and Critical Care Medicine, 2018, 198(11): 1397–1405. doi: 10.1164/rccm.201804-0663OC RAO M V A, KAUSTHUBHA N K, YADAV S, et al. Automatic prediction of spirometry readings from cough and wheeze for monitoring of asthma severity[C]. The 25th European Signal Processing Conference, Kos, Greece, 2017: 41–45. SAHIN D, üBEYLI E D, ILBAY G, et al. Diagnosis of airway obstruction or restrictive spirometric patterns by multiclass support vector machines[J]. Journal of Medical Systems, 2010, 34(5): 967–973. doi: 10.1007/s10916-009-9312-7 何子軍. 呼氣信號分析方法及其在肺功能檢查中的應用研究[D]. [博士論文], 中國科學技術大學, 2014: 17–22.HE Zijun. The method for analyzing expiratory signals and its application in pulmonary function testing[D]. [Ph.D. dissertation], University of Science and Technology of China, 2014: 17–22. CHEN Xiaoying, WANG Na, CHEN Yue, et al. Costs of chronic obstructive pulmonary disease in urban areas of China: A cross-sectional study in four cities[J]. International Journal of Chronic Obstructive Pulmonary Disease, 2016, 11(1): 2625–2632. LOU P, ZHU Yanan, CHEN Peipei, et al. Vulnerability, beliefs, treatments and economic burden of chronic obstructive pulmonary disease in rural areas in China: A cross-sectional study[J]. BMC Public Health, 2012, 12: 287. doi: 10.1186/1471-2458-12-287 BOSHNYAK L L, BYZOV L N, KAZNACHEEV B A, et al. Calibration of turbo-tachometric flowmeters[J]. Measurement Techniques, 1962, 5(7): 592–596. doi: 10.1007/BF00989035 LOPATA V, POPOV A, ELSHABBAH M, et al. Dynamic errors of forced expiration measurements by spirometers[C]. The 35th IEEE International Conference on Electronics and Nanotechnology, Kiev, Ukraine, 2015: 406–408. SOKOL Y I, TOMASHEVSKY R S, and KOLISNYK K V. Turbine spirometers metrological support[C]. 2016 International Conference on Electronics and Information Technology, Odessa, Ukraine, 2016: 1–4. 趙榮建, 周旺, 湯敏芳, 等. 四線渦輪式慢阻肺健康監(jiān)護系統(tǒng)研究[J]. 電子與信息學報, 2019, 41(2): 469–476.ZHAO Rongjian, ZHOU Wang, TANG Minfang, et al. Research of chronic obstructive pulmonary disease monitoring system based on four-line turbine-type[J]. Journal of Electronics &Information Technology, 2019, 41(2): 469–476. 文紅燕. 渦輪流量計在線監(jiān)測系統(tǒng)的研究[D]. [碩士論文], 中國計量大學, 2016: 8–14.WEN Hongyan. Research on the online monitoring system of turbine flow meter[D]. [Master dissertation], China Jiliang University, 2016: 8–14. -