基于貝葉斯自動相關性確定的稀疏重構(gòu)正交頻分復用信號時延估計算法
doi: 10.11999/JEIT181181 cstr: 32379.14.JEIT181181
-
信息工程大學信息系統(tǒng)工程學院 ??鄭州 ??450001
基金項目: 國家自然科學基金(61401513)
Sparse Reconstruction OFDM Delay Estimation Algorithm Based on Bayesian Automatic Relevance Determination
-
Institute of Information System Engineering, The Information Engineering University, Zhengzhou 450001, China
Funds: The National Natural Science Foundation of China (61401513)
-
摘要: 針對復雜環(huán)境下,單測量矢量(SMV)條件下的正交頻分復用(OFDM)時延估計問題,該文提出了一種基于貝葉斯自動相關性確定(BARD)的稀疏重構(gòu)時延估計算法。該算法運用貝葉斯框架,從進一步挖掘有用信息的角度入手,引入不對稱的自動相關性確定(ARD)先驗,融入?yún)?shù)估計過程中,有效提升了低信噪比(SNR)和SMV條件下的時延估計精度。該算法首先基于OFDM信號物理層協(xié)議數(shù)據(jù)單元估計出的信道頻域響應構(gòu)造稀疏化實數(shù)域表示模型,然后對模型中的噪聲和稀疏系數(shù)矢量進行概率假設,同時引入自動相關性確定先驗;最后根據(jù)貝葉斯框架,通過期望最大化(EM)算法求解超參數(shù),實現(xiàn)對時延的估計。仿真實驗表明,該算法具有更好的估計性能,在信噪比較高時更加貼近克拉美羅界(CRB)。同時基于通用軟件無線電外設(USRP),利用實際信號對所提算法進行了有效性地驗證。
-
關鍵詞:
- 時延估計 /
- 神經(jīng)網(wǎng)絡 /
- 自動相關性確定(ARD) /
- 通用軟件無線電外設(USRP)
Abstract: Considering the problem of Orthogonal Frequency Division Multiplexing (OFDM) signal delay estimation with only a Single Measurement Vector (SMV) in a complex environment, a sparse reconstruction time delay estimation algorithm based on Bayesian Automatic Relevance Determination (BARD) is proposed. The Bayesian framework is used to start from the perspective of further mining useful information, and asymmetric Automatic Relevance Determination(ARD) priori is introduced to integrate into the parameter estimation process, which improves the accuracy of time delay estimation under SMV and low Signal-to-Noise Ratio (SNR) conditions. Firstly, a sparse real-domain representation model is constructed based on the estimated frequency domain response of the OFDM signal physical layer protocol data unit. Then, probability hypothesis for the noise and sparse coefficient vectors are made in the model, and Automatic Relevance Determination (ARD) prior is introduced. Finally, according to the Bayesian framework, the Expectation Maximization (EM) algorithm is used to solve the hyperparameters to estimate the delay. The simulation experiments show that the proposed algorithm has better estimation performance and is closer to the Cramér–Rao Bound (CRB). At the same time, based on the Universal Software Radio Peripheral (USRP), the effectiveness of the proposed algorithm is verified by the actual signal. -
表 1 OFDM系統(tǒng)參數(shù)設置
參數(shù) 數(shù)值 FFT周期${T_{{\rm{FFT}}}}(\mu s)$ 3.2 系統(tǒng)帶寬$B({\rm{MHz}})$ 20 子載波數(shù)(個) 64 載波頻率${f_{\rm{c}}}{\rm{(GHz}})$ 2.4 下載: 導出CSV
表 2 各種算法時延估計結(jié)果比較(ns)
算法 多徑序號 1 2 3 4 均值 RMSE 均值 均值 均值 PM 218.40 10.81 270.93 302.16 308.16 CoSaMP 211.00 10.57 262.33 287.50 298.06 MFOCUSS 204.16 4.50 258.16 287.66 307.20 BARD 201.53 1.17 253.00 283.00 314.32 下載: 導出CSV
-
VAN NEE R and PRASAD R. OFDM for Wireless Multimedia Communications[M]. Boston: Artech House, 2000: 3–4. SEGURA M J, MUT V A, and PATI?O H D. Mobile robot self-localization system using IR-UWB sensor in indoor environments[C]. 2009 IEEE International Workshop on Robotic and Sensors Environments, Lecco, Italy, 2009: 29–34. CHAN Y T, HANG H Y C, and CHING P C. Exact and approximate maximum likelihood localization algorithms[J]. IEEE Transactions on Vehicular Technology, 2006, 55(1): 10–16. doi: 10.1109/TVT.2005.861162 CELEBI H and ARSLAN H. Adaptive positioning systems for cognitive radios[C]. 2007 IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Dublin, Ireland, 2007: 78–84. LIU Ying and WANG Shuxun. TOA estimation method using fourth order cumulants[C]. 2000 International Conference on Signal Processing. 16th World Computer Congress 2000, Beijing, China, 2000: 210–214. 巴斌, 劉國春, 李韜, 等. 基于哈達瑪積擴展子空間的到達時間和波達方向聯(lián)合估計[J]. 物理學報, 2015, 64(7): 078403. doi: 10.7498/aps.64.078403BA Bin, LIU Guochun, LI Tao, et al. Joint for time of arrival and direction of arrival estimation algorithm based on the subspace of extended hadamard product[J]. Acta Physica Sinica, 2015, 64(7): 078403. doi: 10.7498/aps.64.078403 BIALER O, RAPHAELI D, and WEISS A J. Robust time-of-arrival estimation in multipath channels with OFDM signals[C]. 2017 Signal Processing Conference, Kos, Greece, 2017: 2724–2728. CHEN Yajun, PENG Jianhua, HUANG Kaizhi, et al. A multipath delay estimation model and algorithm in OFDM systems[C]. 2014 IEEE International Conference on Information Science and Technology, Shenzhen, China, 2014: 144–147. 巴斌, 鄭娜娥, 胡捍英, 等. OFDM系統(tǒng)中基于PM的時延估計算法[J]. 太赫茲科學與電子信息學報, 2016, 14(3): 355–360. doi: 10.11805/TKYDA201603.0355BA Bin, ZHENG Nae, HU Hanying, et al. Time delay estimation based on PM in OFDM system[J]. Journal of Terahertz Science and Electronic Information Technology, 2016, 14(3): 355–360. doi: 10.11805/TKYDA201603.0355 LI Xinrong and PAHLAVAN K. Super-resolution TOA estimation with diversity for indoor geolocation[J]. IEEE Transactions on Wireless Communications, 2004, 3(1): 224–234. doi: 10.1109/TWC.2003.819035 H?CKER P and YANG B. Single snapshot DOA estimation[J]. Advances in Radio Science, 2010, 8: 251–256. doi: 10.5194/ars-8-251-2010 李晶, 趙擁軍, 李冬海. 基于馬爾科夫鏈蒙特卡羅的時延估計算法[J]. 物理學報, 2014, 63(13): 130701. doi: 10.7498/aps.63.130701LI Jing, ZHAO Yongjun, and LI Donghai. Time delay estimation using Markov Chain Monte Carlo method[J]. Acta Physica Sinica, 2014, 63(13): 130701. doi: 10.7498/aps.63.130701 冷雪冬, 巴斌, 逯志宇, 等. 基于回溯篩選的稀疏重構(gòu)時延估計算法[J]. 物理學報, 2016, 65(21): 210701. doi: 10.7498/aps.65.210701LENG Xuedong, BA Bin, LU Zhiyu, et al. Sparse reconstruction time delay estimation algorithm based on backtracking filter[J]. Acta Physica Sinica, 2016, 65(21): 210701. doi: 10.7498/aps.65.210701 COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477–2488. doi: 10.1109/TSP.2005.849172 尹艷玲, 喬鋼, 劉凇佐, 等. 基于基追蹤去噪的水聲正交頻分復用稀疏信道估計[J]. 物理學報, 2015, 64(6): 064301. doi: 10.7498/aps.64.064301YIN Yanling, QIAO Gang, LIU Songzuo, et al. Sparse channel estimation of underwater acoustic orthogonal frequency division Multiplexing based on basis pursuit denoising[J]. Acta Physica Sinica, 2015, 64(6): 064301. doi: 10.7498/aps.64.064301 NEAL R M. Bayesian Learning for Neural Networks[M]. New York: Springer-Verlag, 1996: 112–114. WIPF D and NAGARAJAN S. A new view of automatic relevance determination[C]. The 20th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2007: 1625–1632. GAST M S, O’Reilly Taiwan公司, 譯. 802.11無線網(wǎng)絡權(quán)威指南[M]. 2版. 南京: 東南大學出版社, 2007: 293–297.GAST M S, O’Reilly Taiwan, translation. 802.11 Wireless Netwoeks: The Definitive Guide[M]. 2nd ed. Nanjing: Southeast University Press, 2007: 293–297. KIM J M, LEE O K, and YE J C. Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing[J]. IEEE Transactions on Information Theory, 2012, 58(1): 278–301. doi: 10.1109/TIT.2011.2171529 -